Timings for Ring_polynom.v

  1. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./setoid_ring/Ring_polynom.timing
  2. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./setoid_ring/Ring_polynom.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************)
Set Implicit Arguments.
Require Import Setoid Morphisms.
Require Import BinList BinPos BinNat BinInt.
Require Export Ring_theory.
Local Open Scope positive_scope.
Import RingSyntax.
(* Set Universe Polymorphism. *)
Section MakeRingPol.
(* Ring elements *)
Variable R:Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
Variable req : R -> R -> Prop.
(* Ring properties *)
Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
(* Coefficients *)
Variable C: Type.
Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
Variable phi : C -> R.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi.
(* Power coefficients *)
Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
(* division is ok *)
Variable cdiv: C -> C -> C * C.
Variable div_th: div_theory req cadd cmul phi cdiv.
(* R notations *)
Notation "0" := rO.
Notation "1" := rI.
Infix "+" := radd.
Infix "*" := rmul.
Infix "-" := rsub.
Notation "- x" := (ropp x).
Infix "==" := req.
Infix "^" := (pow_pos rmul).
(* C notations *)
Infix "+!" := cadd.
Infix "*!" := cmul.
Infix "-! " := csub.
Notation "-! x" := (copp x).
Infix "?=!" := ceqb.
Notation "[ x ]" := (phi x).
(* Useful tactics *)
Add Morphism radd with signature (req ==> req ==> req) as radd_ext.
Proof.
exact (Radd_ext Reqe).
Qed.
Add Morphism rmul with signature (req ==> req ==> req) as rmul_ext.
Proof.
exact (Rmul_ext Reqe).
Qed.
Add Morphism ropp with signature (req ==> req) as ropp_ext.
Proof.
exact (Ropp_ext Reqe).
Qed.
Add Morphism rsub with signature (req ==> req ==> req) as rsub_ext.
Proof.
exact (ARsub_ext Rsth Reqe ARth).
Qed.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.
Ltac add_permut_rec t := match t with | ?x + ?y => add_permut_rec y || add_permut_rec x | _ => add_push t; apply (Radd_ext Reqe); [|reflexivity] end.
Ltac add_permut := repeat (reflexivity || match goal with |- ?t == _ => add_permut_rec t end).
Ltac mul_permut_rec t := match t with | ?x * ?y => mul_permut_rec y || mul_permut_rec x | _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity] end.
Ltac mul_permut := repeat (reflexivity || match goal with |- ?t == _ => mul_permut_rec t end).
(* Definition of multivariable polynomials with coefficients in C : Type [Pol] represents [X1 ... Xn]. The representation is Horner's where a [n] variable polynomial (C[X1..Xn]) is seen as a polynomial on [X1] which coefficients are polynomials with [n-1] variables (C[X2..Xn]). There are several optimisations to make the repr compacter: - [Pc c] is the constant polynomial of value c == c*X1^0*..*Xn^0 - [Pinj j Q] is a polynomial constant w.r.t the [j] first variables. variable indices are shifted of j in Q. == X1^0 *..* Xj^0 * Q{X1 <- Xj+1;..; Xn-j <- Xn} - [PX P i Q] is an optimised Horner form of P*X^i + Q with P not the null polynomial == P * X1^i + Q{X1 <- X2; ..; Xn-1 <- Xn} In addition: - polynomials of the form (PX (PX P i (Pc 0)) j Q) are forbidden since they can be represented by the simpler form (PX P (i+j) Q) - (Pinj i (Pinj j P)) is (Pinj (i+j) P) - (Pinj i (Pc c)) is (Pc c) *)
Inductive Pol : Type := | Pc : C -> Pol | Pinj : positive -> Pol -> Pol | PX : Pol -> positive -> Pol -> Pol.
Definition P0 := Pc cO.
Definition P1 := Pc cI.
Fixpoint Peq (P P' : Pol) {struct P'} : bool := match P, P' with | Pc c, Pc c' => c ?=! c' | Pinj j Q, Pinj j' Q' => match j ?= j' with | Eq => Peq Q Q' | _ => false end | PX P i Q, PX P' i' Q' => match i ?= i' with | Eq => if Peq P P' then Peq Q Q' else false | _ => false end | _, _ => false end.
Infix "?==" := Peq.
Definition mkPinj j P := match P with | Pc _ => P | Pinj j' Q => Pinj (j + j') Q | _ => Pinj j P end.
Definition mkPinj_pred j P:= match j with | xH => P | xO j => Pinj (Pos.pred_double j) P | xI j => Pinj (xO j) P end.
Definition mkPX P i Q := match P with | Pc c => if c ?=! cO then mkPinj xH Q else PX P i Q | Pinj _ _ => PX P i Q | PX P' i' Q' => if Q' ?== P0 then PX P' (i' + i) Q else PX P i Q end.
Definition mkXi i := PX P1 i P0.
Definition mkX := mkXi 1.
(** Opposite of addition *)
Fixpoint Popp (P:Pol) : Pol := match P with | Pc c => Pc (-! c) | Pinj j Q => Pinj j (Popp Q) | PX P i Q => PX (Popp P) i (Popp Q) end.
Notation "-- P" := (Popp P).
(** Addition et subtraction *)
Fixpoint PaddC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 +! c) | Pinj j Q => Pinj j (PaddC Q c) | PX P i Q => PX P i (PaddC Q c) end.
Fixpoint PsubC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 -! c) | Pinj j Q => Pinj j (PsubC Q c) | PX P i Q => PX P i (PsubC Q c) end.
Section PopI.
Variable Pop : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PaddI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC Q c) | Pinj j' Q' => match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PaddI k Q') end | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) | xO j => PX P i (PaddI (Pos.pred_double j) Q') | xI j => PX P i (PaddI (xO j) Q') end end.
Fixpoint PsubI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC (--Q) c) | Pinj j' Q' => match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PsubI k Q') end | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) | xO j => PX P i (PsubI (Pos.pred_double j) Q') | xI j => PX P i (PsubI (xO j) Q') end end.
Variable P' : Pol.
Fixpoint PaddX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX P' i' P | Pinj j Q' => match j with | xH => PX P' i' Q' | xO j => PX P' i' (Pinj (Pos.pred_double j) Q') | xI j => PX P' i' (Pinj (xO j) Q') end | PX P i Q' => match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PaddX k P) i Q' end end.
Fixpoint PsubX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX (--P') i' P | Pinj j Q' => match j with | xH => PX (--P') i' Q' | xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q') | xI j => PX (--P') i' (Pinj (xO j) Q') end | PX P i Q' => match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PsubX k P) i Q' end end.
End PopI.
Fixpoint Padd (P P': Pol) {struct P'} : Pol := match P' with | Pc c' => PaddC P c' | Pinj j' Q' => PaddI Padd Q' j' P | PX P' i' Q' => match P with | Pc c => PX P' i' (PaddC Q' c) | Pinj j Q => match j with | xH => PX P' i' (Padd Q Q') | xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q') | xI j => PX P' i' (Padd (Pinj (xO j) Q) Q') end | PX P i Q => match Z.pos_sub i i' with | Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q') | Z0 => mkPX (Padd P P') i (Padd Q Q') | Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q') end end end.
Infix "++" := Padd.
Fixpoint Psub (P P': Pol) {struct P'} : Pol := match P' with | Pc c' => PsubC P c' | Pinj j' Q' => PsubI Psub Q' j' P | PX P' i' Q' => match P with | Pc c => PX (--P') i' (*(--(PsubC Q' c))*) (PaddC (--Q') c) | Pinj j Q => match j with | xH => PX (--P') i' (Psub Q Q') | xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q') | xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q') end | PX P i Q => match Z.pos_sub i i' with | Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q') | Z0 => mkPX (Psub P P') i (Psub Q Q') | Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q') end end end.
Infix "--" := Psub.
(** Multiplication *)
Fixpoint PmulC_aux (P:Pol) (c:C) : Pol := match P with | Pc c' => Pc (c' *! c) | Pinj j Q => mkPinj j (PmulC_aux Q c) | PX P i Q => mkPX (PmulC_aux P c) i (PmulC_aux Q c) end.
Definition PmulC P c := if c ?=! cO then P0 else if c ?=! cI then P else PmulC_aux P c.
Section PmulI.
Variable Pmul : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PmulI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PmulC Q c) | Pinj j' Q' => match Z.pos_sub j' j with | Zpos k => mkPinj j (Pmul (Pinj k Q') Q) | Z0 => mkPinj j (Pmul Q' Q) | Zneg k => mkPinj j' (PmulI k Q') end | PX P' i' Q' => match j with | xH => mkPX (PmulI xH P') i' (Pmul Q' Q) | xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q') | xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q') end end.
End PmulI.
Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol := match P'' with | Pc c => PmulC P c | Pinj j' Q' => PmulI Pmul Q' j' P | PX P' i' Q' => match P with | Pc c => PmulC P'' c | Pinj j Q => let QQ' := match j with | xH => Pmul Q Q' | xO j => Pmul (Pinj (Pos.pred_double j) Q) Q' | xI j => Pmul (Pinj (xO j) Q) Q' end in mkPX (Pmul P P') i' QQ' | PX P i Q=> let QQ' := Pmul Q Q' in let PQ' := PmulI Pmul Q' xH P in let QP' := Pmul (mkPinj xH Q) P' in let PP' := Pmul P P' in (mkPX (mkPX PP' i P0 ++ QP') i' P0) ++ mkPX PQ' i QQ' end end.
Infix "**" := Pmul.
(** Monomial **) (** A monomial is X1^k1...Xi^ki. Its representation is a simplified version of the polynomial representation: - [mon0] correspond to the polynom [P1]. - [(zmon j M)] corresponds to [(Pinj j ...)], i.e. skip j variable indices. - [(vmon i M)] is X^i*M with X the current variable, its corresponds to (PX P1 i ...)] *)
Inductive Mon: Set := | mon0: Mon | zmon: positive -> Mon -> Mon | vmon: positive -> Mon -> Mon.
Definition mkZmon j M := match M with mon0 => mon0 | _ => zmon j M end.
Definition zmon_pred j M := match j with xH => M | _ => mkZmon (Pos.pred j) M end.
Definition mkVmon i M := match M with | mon0 => vmon i mon0 | zmon j m => vmon i (zmon_pred j m) | vmon i' m => vmon (i+i') m end.
Fixpoint CFactor (P: Pol) (c: C) {struct P}: Pol * Pol := match P with | Pc c1 => let (q,r) := cdiv c1 c in (Pc r, Pc q) | Pinj j1 P1 => let (R,S) := CFactor P1 c in (mkPinj j1 R, mkPinj j1 S) | PX P1 i Q1 => let (R1, S1) := CFactor P1 c in let (R2, S2) := CFactor Q1 c in (mkPX R1 i R2, mkPX S1 i S2) end.
Fixpoint MFactor (P: Pol) (c: C) (M: Mon) {struct P}: Pol * Pol := match P, M with _, mon0 => if (ceqb c cI) then (Pc cO, P) else CFactor P c | Pc _, _ => (P, Pc cO) | Pinj j1 P1, zmon j2 M1 => match j1 ?= j2 with Eq => let (R,S) := MFactor P1 c M1 in (mkPinj j1 R, mkPinj j1 S) | Lt => let (R,S) := MFactor P1 c (zmon (j2 - j1) M1) in (mkPinj j1 R, mkPinj j1 S) | Gt => (P, Pc cO) end | Pinj _ _, vmon _ _ => (P, Pc cO) | PX P1 i Q1, zmon j M1 => let M2 := zmon_pred j M1 in let (R1, S1) := MFactor P1 c M in let (R2, S2) := MFactor Q1 c M2 in (mkPX R1 i R2, mkPX S1 i S2) | PX P1 i Q1, vmon j M1 => match i ?= j with Eq => let (R1,S1) := MFactor P1 c (mkZmon xH M1) in (mkPX R1 i Q1, S1) | Lt => let (R1,S1) := MFactor P1 c (vmon (j - i) M1) in (mkPX R1 i Q1, S1) | Gt => let (R1,S1) := MFactor P1 c (mkZmon xH M1) in (mkPX R1 i Q1, mkPX S1 (i-j) (Pc cO)) end end.
Definition POneSubst (P1: Pol) (cM1: C * Mon) (P2: Pol): option Pol := let (c,M1) := cM1 in let (Q1,R1) := MFactor P1 c M1 in match R1 with (Pc c) => if c ?=! cO then None else Some (Padd Q1 (Pmul P2 R1)) | _ => Some (Padd Q1 (Pmul P2 R1)) end.
Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) : Pol := match POneSubst P1 cM1 P2 with Some P3 => match n with S n1 => PNSubst1 P3 cM1 P2 n1 | _ => P3 end | _ => P1 end.
Definition PNSubst (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat): option Pol := match POneSubst P1 cM1 P2 with Some P3 => match n with S n1 => Some (PNSubst1 P3 cM1 P2 n1) | _ => None end | _ => None end.
Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : Pol := match LM1 with cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n | _ => P1 end.
Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : option Pol := match LM1 with cons (M1,P2) LM2 => match PNSubst P1 M1 P2 n with Some P3 => Some (PSubstL1 P3 LM2 n) | None => PSubstL P1 LM2 n end | _ => None end.
Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) : Pol := match PSubstL P1 LM1 n with Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end | _ => P1 end.
(** Evaluation of a polynomial towards R *)
Local Notation hd := (List.hd 0).
Fixpoint Pphi(l:list R) (P:Pol) : R := match P with | Pc c => [c] | Pinj j Q => Pphi (jump j l) Q | PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
Definition Pequiv (P Q : Pol) := forall l, P@l == Q@l.
Infix "===" := Pequiv (at level 70, no associativity).
Instance Pequiv_eq : Equivalence Pequiv.
Proof.
unfold Pequiv; split; red; intros; [reflexivity|now symmetry|now etransitivity].
Qed.
Instance Pphi_ext : Proper (eq ==> Pequiv ==> req) Pphi.
Proof.
now intros l l' <- P Q H.
Qed.
Instance Pinj_ext : Proper (eq ==> Pequiv ==> Pequiv) Pinj.
Proof.
intros i j <- P P' HP l.
simpl.
now rewrite HP.
Qed.
Instance PX_ext : Proper (Pequiv ==> eq ==> Pequiv ==> Pequiv) PX.
Proof.
intros P P' HP p p' <- Q Q' HQ l.
simpl.
now rewrite HP, HQ.
Qed.
(** Evaluation of a monomial towards R *)
Fixpoint Mphi(l:list R) (M: Mon) : R := match M with | mon0 => rI | zmon j M1 => Mphi (jump j l) M1 | vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i end.
Notation "M @@ l" := (Mphi l M) (at level 10, no associativity).
(** Proofs *)
Ltac destr_pos_sub := match goal with |- context [Z.pos_sub ?x ?y] => generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y) end.
Lemma jump_add' i j (l:list R) : jump (i + j) l = jump j (jump i l).
Proof.
rewrite Pos.add_comm.
apply jump_add.
Qed.
Lemma Peq_ok P P' : (P ?== P') = true -> P === P'.
Proof.
unfold Pequiv.
revert P';induction P as [|p P IHP|P2 IHP1 p P3 IHP2]; intros P';destruct P' as [|p0 P'|P'1 p0 P'2];simpl; intros H l; try easy.
-
now apply (morph_eq CRmorph).
-
destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
now rewrite IHP.
-
specialize (IHP1 P'1); specialize (IHP2 P'2).
destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
destruct (P2 ?== P'1); [|easy].
rewrite H in *.
now rewrite IHP1, IHP2.
Qed.
Lemma Peq_spec P P' : BoolSpec (P === P') True (P ?== P').
Proof.
generalize (Peq_ok P P').
destruct (P ?== P'); auto.
Qed.
Lemma Pphi0 l : P0@l == 0.
Proof.
simpl;apply (morph0 CRmorph).
Qed.
Lemma Pphi1 l : P1@l == 1.
Proof.
simpl;apply (morph1 CRmorph).
Qed.
Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l).
Proof.
destruct P;simpl;rsimpl.
now rewrite jump_add'.
Qed.
Instance mkPinj_ext : Proper (eq ==> Pequiv ==> Pequiv) mkPinj.
Proof.
intros i j <- P Q H l.
now rewrite !mkPinj_ok.
Qed.
Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j.
Proof.
rewrite Pos.add_comm.
apply (pow_pos_add Rsth (Rmul_ext Reqe) (ARmul_assoc ARth)).
Qed.
Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c').
Proof.
generalize (morph_eq CRmorph c c').
destruct (c ?=! c'); auto.
Qed.
Lemma mkPX_ok l P i Q : (mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l).
Proof.
unfold mkPX.
destruct P.
-
case ceqb_spec; intros H; simpl; try reflexivity.
rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl.
-
reflexivity.
-
case Peq_spec; intros H; simpl; try reflexivity.
rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl.
Qed.
Instance mkPX_ext : Proper (Pequiv ==> eq ==> Pequiv ==> Pequiv) mkPX.
Proof.
intros P P' HP i i' <- Q Q' HQ l.
now rewrite !mkPX_ok, HP, HQ.
Qed.
Hint Rewrite Pphi0 Pphi1 mkPinj_ok mkPX_ok (morph0 CRmorph) (morph1 CRmorph) (morph0 CRmorph) (morph_add CRmorph) (morph_mul CRmorph) (morph_sub CRmorph) (morph_opp CRmorph) : Esimpl.
(* Quicker than autorewrite with Esimpl :-) *)
Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl.
Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c].
Proof.
revert l;induction P as [| |P2 IHP1 p P3 IHP2];simpl;intros;Esimpl;trivial.
rewrite IHP2;rsimpl.
Qed.
Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c].
Proof.
revert l;induction P as [|p P IHP|P2 IHP1 p P3 IHP2];simpl;intros.
-
Esimpl.
-
rewrite IHP;rsimpl.
-
rewrite IHP2;rsimpl.
Qed.
Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c].
Proof.
revert l;induction P as [| |P2 IHP1 p P3 IHP2];simpl;intros;Esimpl;trivial.
rewrite IHP1, IHP2;rsimpl.
add_permut.
mul_permut.
Qed.
Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c].
Proof.
unfold PmulC.
case ceqb_spec; intros H.
-
rewrite H; Esimpl.
-
case ceqb_spec; intros H'.
+
rewrite H'; Esimpl.
+
apply PmulC_aux_ok.
Qed.
Lemma Popp_ok P l : (--P)@l == - P@l.
Proof.
revert l;induction P as [|p P IHP|P2 IHP1 p P3 IHP2];simpl;intros.
-
Esimpl.
-
apply IHP.
-
rewrite IHP1, IHP2;rsimpl.
Qed.
Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl.
Lemma PaddX_ok P' P k l : (forall P l, (P++P')@l == P@l + P'@l) -> (PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k.
Proof.
intros IHP'.
revert k l.
induction P as [|p P IHP|P2 IHP1 p P3 IHP2];simpl;intros.
-
add_permut.
-
destruct p; simpl; rewrite ?jump_pred_double; add_permut.
-
destr_pos_sub; intros ->; Esimpl.
+
rewrite IHP';rsimpl.
add_permut.
+
rewrite IHP', pow_pos_add;simpl;Esimpl.
add_permut.
+
rewrite IHP1, pow_pos_add;rsimpl.
add_permut.
Qed.
Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l.
Proof.
revert P l; induction P' as [|p P' IHP'|P'1 IHP'1 p P'2 IHP'2]; simpl;intros P l;Esimpl.
-
revert p l; induction P as [|p P IHP|P2 IHP1 p P3 IHP2];simpl;intros p0 l.
+
Esimpl; add_permut.
+
destr_pos_sub; intros ->;Esimpl.
*
now rewrite IHP'.
*
rewrite IHP';Esimpl.
now rewrite jump_add'.
*
rewrite IHP.
now rewrite jump_add'.
+
destruct p0;simpl.
*
rewrite IHP2;simpl.
rsimpl.
*
rewrite IHP2;simpl.
rewrite jump_pred_double.
rsimpl.
*
rewrite IHP'.
rsimpl.
-
destruct P as [|p0 ?|? ? ?];simpl.
+
Esimpl.
add_permut.
+
destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
*
rsimpl.
add_permut.
*
rewrite jump_pred_double.
rsimpl.
add_permut.
*
rsimpl.
add_permut.
+
destr_pos_sub; intros ->; Esimpl.
*
rewrite IHP'1, IHP'2;rsimpl.
add_permut.
*
rewrite IHP'1, IHP'2;simpl;Esimpl.
rewrite pow_pos_add;rsimpl.
add_permut.
*
rewrite PaddX_ok by trivial; rsimpl.
rewrite IHP'2, pow_pos_add; rsimpl.
add_permut.
Qed.
Lemma Psub_opp P' P : P -- P' === P ++ (--P').
Proof.
revert P; induction P' as [|p P' IHP'|P'1 IHP'1 p P'2 IHP'2]; simpl; intros P.
-
intro l; Esimpl.
-
revert p; induction P; simpl; intros p0; try reflexivity.
+
destr_pos_sub; intros ->; now apply mkPinj_ext.
+
destruct p0; now apply PX_ext.
-
destruct P as [|p0 P|P2 p0 P3]; simpl; try reflexivity.
+
destruct p0; now apply PX_ext.
+
destr_pos_sub; intros ->; apply mkPX_ext; auto.
let p1 := match goal with |- PsubX _ _ ?p1 _ === _ => p1 end in revert p1.
induction P2; simpl; intros; try reflexivity.
destr_pos_sub; intros ->; now apply mkPX_ext.
Qed.
Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l.
Proof.
rewrite Psub_opp, Padd_ok, Popp_ok.
rsimpl.
Qed.
Lemma PmulI_ok P' : (forall P l, (Pmul P P') @ l == P @ l * P' @ l) -> forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
Proof.
intros IHP' P.
induction P as [|p P IHP|? IHP1 ? ? IHP2];simpl;intros p0 l.
-
Esimpl; mul_permut.
-
destr_pos_sub; intros ->;Esimpl.
+
now rewrite IHP'.
+
now rewrite IHP', jump_add'.
+
now rewrite IHP, jump_add'.
-
destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl.
+
f_equiv.
mul_permut.
+
rewrite jump_pred_double.
f_equiv.
mul_permut.
+
rewrite IHP'.
f_equiv.
mul_permut.
Qed.
Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l.
Proof.
revert P l;induction P' as [| |? IHP'1 ? ? IHP'2];simpl;intros P l.
-
apply PmulC_ok.
-
apply PmulI_ok;trivial.
-
destruct P as [|p0|].
+
rewrite (ARmul_comm ARth).
Esimpl.
+
Esimpl.
f_equiv.
*
rewrite IHP'1; Esimpl.
*
destruct p0;rewrite IHP'2;Esimpl.
rewrite jump_pred_double; Esimpl.
+
rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok, !IHP'1, !IHP'2, PmulI_ok; trivial.
simpl.
Esimpl.
add_permut; f_equiv; mul_permut.
Qed.
Lemma mkZmon_ok M j l : (mkZmon j M) @@ l == (zmon j M) @@ l.
Proof.
destruct M; simpl; rsimpl.
Qed.
Lemma zmon_pred_ok M j l : (zmon_pred j M) @@ (tail l) == (zmon j M) @@ l.
Proof.
destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl.
rewrite jump_pred_double; rsimpl.
Qed.
Lemma mkVmon_ok M i l : (mkVmon i M)@@l == M@@l * (hd l)^i.
Proof.
destruct M;simpl;intros;rsimpl.
-
rewrite zmon_pred_ok;simpl;rsimpl.
-
rewrite pow_pos_add;rsimpl.
Qed.
Ltac destr_factor := match goal with | H : context [CFactor ?P _] |- context [CFactor ?P ?c] => destruct (CFactor P c); destr_factor; rewrite H; clear H | H : context [MFactor ?P _ _] |- context [MFactor ?P ?c ?M] => specialize (H M); destruct (MFactor P c M); destr_factor; rewrite H; clear H | _ => idtac end.
Lemma Mcphi_ok P c l : let (Q,R) := CFactor P c in P@l == Q@l + [c] * R@l.
Proof.
revert l.
induction P as [c0 | j P IH | P1 IH1 i P2 IH2]; intros l; Esimpl.
-
assert (H := (div_eucl_th div_th) c0 c).
destruct cdiv as (q,r).
rewrite H; Esimpl.
add_permut.
-
destr_factor.
Esimpl.
-
destr_factor.
Esimpl.
add_permut.
Qed.
Lemma Mphi_ok P (cM: C * Mon) l : let (c,M) := cM in let (Q,R) := MFactor P c M in P@l == Q@l + [c] * M@@l * R@l.
Proof.
destruct cM as (c,M).
revert M l.
induction P as [c0|p P ?|P2 ? ? P3 ?]; intros M; destruct M; intros l; simpl; auto; try (case ceqb_spec; intro He); try (case Pos.compare_spec; intros He); rewrite ?He; destr_factor; simpl; Esimpl.
-
assert (H := div_eucl_th div_th c0 c).
destruct cdiv as (q,r).
rewrite H; Esimpl.
add_permut.
-
assert (H := Mcphi_ok P c).
destr_factor.
Esimpl.
-
now rewrite <- jump_add, Pos.sub_add.
-
assert (H2 := Mcphi_ok P2 c).
assert (H3 := Mcphi_ok P3 c).
destr_factor.
Esimpl.
add_permut.
-
rewrite zmon_pred_ok.
simpl.
add_permut.
-
rewrite mkZmon_ok.
simpl.
add_permut.
mul_permut.
-
add_permut.
mul_permut.
rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl.
-
rewrite mkZmon_ok.
simpl.
Esimpl.
add_permut.
mul_permut.
rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl.
Qed.
Lemma POneSubst_ok P1 cM1 P2 P3 l : POneSubst P1 cM1 P2 = Some P3 -> [fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l.
Proof.
destruct cM1 as (cc,M1).
unfold POneSubst.
assert (H := Mphi_ok P1 (cc, M1) l).
simpl in H.
destruct MFactor as (R1,S1); simpl.
rewrite H.
clear H.
intros EQ EQ'.
replace P3 with (R1 ++ P2 ** S1).
-
rewrite EQ', Padd_ok, Pmul_ok; rsimpl.
-
revert EQ.
destruct S1; try now injection 1.
case ceqb_spec; now inversion 2.
Qed.
Lemma PNSubst1_ok n P1 cM1 P2 l : [fst cM1] * (snd cM1)@@l == P2@l -> P1@l == (PNSubst1 P1 cM1 P2 n)@l.
Proof.
revert P1.
induction n as [|n IHn]; simpl; intros P1; generalize (POneSubst_ok P1 cM1 P2); destruct POneSubst; intros; rewrite <- ?IHn; auto; reflexivity.
Qed.
Lemma PNSubst_ok n P1 cM1 P2 l P3 : PNSubst P1 cM1 P2 n = Some P3 -> [fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l.
Proof.
unfold PNSubst.
assert (H := POneSubst_ok P1 cM1 P2); destruct POneSubst; try discriminate.
destruct n; inversion_clear 1.
intros.
rewrite <- PNSubst1_ok; auto.
Qed.
Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) : Prop := match LM1 with | (M1,P2) :: LM2 => ([fst M1] * (snd M1)@@l == P2@l) /\ MPcond LM2 l | _ => True end.
Lemma PSubstL1_ok n LM1 P1 l : MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Proof.
revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros.
-
reflexivity.
-
rewrite <- IH by intuition; now apply PNSubst1_ok.
Qed.
Lemma PSubstL_ok n LM1 P1 P2 l : PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
Proof.
revert P1.
induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros P3 H **.
-
discriminate.
-
assert (H':=PNSubst_ok n P3 M2 P2').
destruct PNSubst.
*
injection H as [= <-].
rewrite <- PSubstL1_ok; intuition.
*
now apply IH.
Qed.
Lemma PNSubstL_ok m n LM1 P1 l : MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
Proof.
revert LM1 P1.
induction m as [|m IHm]; simpl; intros LM1 P2 H; assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL; auto; try reflexivity.
rewrite <- IHm; auto.
Qed.
(** Definition of polynomial expressions *)
Inductive PExpr : Type := | PEO : PExpr | PEI : PExpr | PEc : C -> PExpr | PEX : positive -> PExpr | PEadd : PExpr -> PExpr -> PExpr | PEsub : PExpr -> PExpr -> PExpr | PEmul : PExpr -> PExpr -> PExpr | PEopp : PExpr -> PExpr | PEpow : PExpr -> N -> PExpr.
Register PExpr as plugins.ring.pexpr.
Register PEc as plugins.ring.const.
Register PEX as plugins.ring.var.
Register PEadd as plugins.ring.add.
Register PEsub as plugins.ring.sub.
Register PEmul as plugins.ring.mul.
Register PEopp as plugins.ring.opp.
Register PEpow as plugins.ring.pow.
(** evaluation of polynomial expressions towards R *)
Definition mk_X j := mkPinj_pred j mkX.
(** evaluation of polynomial expressions towards R *)
Fixpoint PEeval (l:list R) (pe:PExpr) {struct pe} : R := match pe with | PEO => rO | PEI => rI | PEc c => phi c | PEX j => nth 0 j l | PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2) | PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2) | PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2) | PEopp pe1 => - (PEeval l pe1) | PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n) end.
Strategy expand [PEeval].
(** Correctness proofs *)
Lemma mkX_ok p l : nth 0 p l == (mk_X p) @ l.
Proof.
destruct p;simpl;intros;Esimpl;trivial.
-
now rewrite <-jump_tl, nth_jump.
-
now rewrite <- nth_jump, nth_pred_double.
Qed.
Hint Rewrite Padd_ok Psub_ok : Esimpl.
Section POWER.
Variable subst_l : Pol -> Pol.
Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol := match p with | xH => subst_l (res ** P) | xO p => Ppow_pos (Ppow_pos res P p) P p | xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P) end.
Definition Ppow_N P n := match n with | N0 => P1 | Npos p => Ppow_pos P1 P p end.
Lemma Ppow_pos_ok l : (forall P, subst_l P@l == P@l) -> forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
Proof.
intros subst_l_ok res P p.
revert res.
induction p as [p IHp|p IHp|];simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp; mul_permut.
Qed.
Lemma Ppow_N_ok l : (forall P, subst_l P@l == P@l) -> forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
Proof.
intros ? P n; destruct n;simpl.
-
reflexivity.
-
rewrite Ppow_pos_ok by trivial.
Esimpl.
Qed.
End POWER.
(** Normalization and rewriting *)
Section NORM_SUBST_REC.
Variable n : nat.
Variable lmp:list (C*Mon*Pol).
Let subst_l P := PNSubstL P lmp n n.
Let Pmul_subst P1 P2 := subst_l (P1 ** P2).
Let Ppow_subst := Ppow_N subst_l.
Fixpoint norm_aux (pe:PExpr) : Pol := match pe with | PEO => Pc cO | PEI => Pc cI | PEc c => Pc c | PEX j => mk_X j | PEadd (PEopp pe1) pe2 => (norm_aux pe2) -- (norm_aux pe1) | PEadd pe1 (PEopp pe2) => (norm_aux pe1) -- (norm_aux pe2) | PEadd pe1 pe2 => (norm_aux pe1) ++ (norm_aux pe2) | PEsub pe1 pe2 => (norm_aux pe1) -- (norm_aux pe2) | PEmul pe1 pe2 => (norm_aux pe1) ** (norm_aux pe2) | PEopp pe1 => -- (norm_aux pe1) | PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n end.
Definition norm_subst pe := subst_l (norm_aux pe).
(** Internally, [norm_aux] is expanded in a large number of cases. To speed-up proofs, we use an alternative definition. *)
Definition get_PEopp pe := match pe with | PEopp pe' => Some pe' | _ => None end.
Lemma norm_aux_PEadd pe1 pe2 : norm_aux (PEadd pe1 pe2) = match get_PEopp pe1, get_PEopp pe2 with | Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1') | None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2') | None, None => (norm_aux pe1) ++ (norm_aux pe2) end.
Proof.
simpl (norm_aux (PEadd _ _)).
destruct pe1; [ | | | | | | | reflexivity | ]; destruct pe2; simpl get_PEopp; reflexivity.
Qed.
Lemma norm_aux_PEopp pe : match get_PEopp pe with | Some pe' => norm_aux pe = -- (norm_aux pe') | None => True end.
Proof.
now destruct pe.
Qed.
Arguments norm_aux !pe : simpl nomatch.
Lemma norm_aux_spec l pe : PEeval l pe == (norm_aux pe)@l.
Proof.
intros.
induction pe as [| |c|p|pe1 IHpe1 pe2 IHpe2|? IHpe1 ? IHpe2|? IHpe1 ? IHpe2 |? IHpe|? IHpe n0]; cbn.
-
now rewrite (morph0 CRmorph).
-
now rewrite (morph1 CRmorph).
-
reflexivity.
-
apply mkX_ok.
-
rewrite IHpe1, IHpe2.
assert (H1 := norm_aux_PEopp pe1).
assert (H2 := norm_aux_PEopp pe2).
rewrite norm_aux_PEadd.
do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut.
-
rewrite IHpe1, IHpe2.
Esimpl.
-
rewrite IHpe1, IHpe2.
now rewrite Pmul_ok.
-
rewrite IHpe.
Esimpl.
-
rewrite Ppow_N_ok by reflexivity.
rewrite (rpow_pow_N pow_th).
destruct n0 as [|p]; simpl; Esimpl.
induction p as [p IHp|p IHp|];simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok.
Qed.
Lemma norm_subst_spec : forall l pe, MPcond lmp l -> PEeval l pe == (norm_subst pe)@l.
Proof.
intros;unfold norm_subst.
unfold subst_l;rewrite <- PNSubstL_ok;trivial.
apply norm_aux_spec.
Qed.
End NORM_SUBST_REC.
Fixpoint interp_PElist (l:list R) (lpe:list (PExpr*PExpr)) {struct lpe} : Prop := match lpe with | nil => True | (me,pe)::lpe => match lpe with | nil => PEeval l me == PEeval l pe | _ => PEeval l me == PEeval l pe /\ interp_PElist l lpe end end.
Fixpoint mon_of_pol (P:Pol) : option (C * Mon) := match P with | Pc c => if (c ?=! cO) then None else Some (c, mon0) | Pinj j P => match mon_of_pol P with | None => None | Some (c,m) => Some (c, mkZmon j m) end | PX P i Q => if Peq Q P0 then match mon_of_pol P with | None => None | Some (c,m) => Some (c, mkVmon i m) end else None end.
Fixpoint mk_monpol_list (lpe:list (PExpr * PExpr)) : list (C*Mon*Pol) := match lpe with | nil => nil | (me,pe)::lpe => match mon_of_pol (norm_subst 0 nil me) with | None => mk_monpol_list lpe | Some m => (m,norm_subst 0 nil pe):: mk_monpol_list lpe end end.
Lemma mon_of_pol_ok : forall P m, mon_of_pol P = Some m -> forall l, [fst m] * Mphi l (snd m) == P@l.
Proof.
intros P; induction P as [c|p P IHP|P2 IHP1 ? P3 ?];simpl;intros m H l;Esimpl.
-
assert (H1 := (morph_eq CRmorph) c cO).
destruct (c ?=! cO).
+
discriminate.
+
inversion H;trivial;Esimpl.
-
generalize H;clear H;case_eq (mon_of_pol P).
+
intros (c1,P2) H0 H1; inversion H1; Esimpl.
generalize (IHP (c1, P2) H0 (jump p l)).
rewrite mkZmon_ok;simpl;auto.
+
intros; discriminate.
-
generalize H;clear H;change match P3 with | Pc c => c ?=! cO | Pinj _ _ => false | PX _ _ _ => false end with (P3 ?== P0).
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
+
case_eq (mon_of_pol P2);try intros (cc, pp); intros H0 H1.
*
inversion H1.
simpl.
rewrite mkVmon_ok;simpl.
rewrite H;trivial;Esimpl.
generalize (IHP1 _ H0); simpl; intros HH; rewrite HH; rsimpl.
*
discriminate.
+
intros;discriminate.
Qed.
Lemma interp_PElist_ok : forall l lpe, interp_PElist l lpe -> MPcond (mk_monpol_list lpe) l.
Proof.
intros l lpe; induction lpe as [|a lpe IHlpe];simpl.
-
trivial.
-
destruct a as [p p0];simpl;intros H.
assert (HH:=mon_of_pol_ok (norm_subst 0 nil p)); destruct (mon_of_pol (norm_subst 0 nil p)).
+
split.
*
rewrite <- norm_subst_spec by exact I.
destruct lpe;try destruct H as [H H0];rewrite <- H; rewrite (norm_subst_spec 0 nil); try exact I;apply HH;trivial.
*
apply IHlpe.
destruct lpe;simpl;trivial.
destruct H as [H H0].
exact H0.
+
apply IHlpe.
destruct lpe;simpl;trivial.
destruct H as [H H0].
exact H0.
Qed.
Lemma norm_subst_ok : forall n l lpe pe, interp_PElist l lpe -> PEeval l pe == (norm_subst n (mk_monpol_list lpe) pe)@l.
Proof.
intros;apply norm_subst_spec.
apply interp_PElist_ok;trivial.
Qed.
Lemma ring_correct : forall n l lpe pe1 pe2, interp_PElist l lpe -> (let lmp := mk_monpol_list lpe in norm_subst n lmp pe1 ?== norm_subst n lmp pe2) = true -> PEeval l pe1 == PEeval l pe2.
Proof.
simpl;intros n l lpe pe1 pe2 **.
do 2 (rewrite (norm_subst_ok n l lpe);trivial).
apply Peq_ok;trivial.
Qed.
(** Generic evaluation of polynomial towards R avoiding parenthesis *)
Variable get_sign : C -> option C.
Variable get_sign_spec : sign_theory copp ceqb get_sign.
Section EVALUATION.
(* [mkpow x p] = x^p *)
Variable mkpow : R -> positive -> R.
(* [mkpow x p] = -(x^p) *)
Variable mkopp_pow : R -> positive -> R.
(* [mkmult_pow r x p] = r * x^p *)
Variable mkmult_pow : R -> R -> positive -> R.
Fixpoint mkmult_rec (r:R) (lm:list (R*positive)) {struct lm}: R := match lm with | nil => r | cons (x,p) t => mkmult_rec (mkmult_pow r x p) t end.
Definition mkmult1 lm := match lm with | nil => 1 | cons (x,p) t => mkmult_rec (mkpow x p) t end.
Definition mkmultm1 lm := match lm with | nil => ropp rI | cons (x,p) t => mkmult_rec (mkopp_pow x p) t end.
Definition mkmult_c_pos c lm := if c ?=! cI then mkmult1 (rev' lm) else mkmult_rec [c] (rev' lm).
Definition mkmult_c c lm := match get_sign c with | None => mkmult_c_pos c lm | Some c' => if c' ?=! cI then mkmultm1 (rev' lm) else mkmult_rec [c] (rev' lm) end.
Definition mkadd_mult rP c lm := match get_sign c with | None => rP + mkmult_c_pos c lm | Some c' => rP - mkmult_c_pos c' lm end.
Definition add_pow_list (r:R) n l := match n with | N0 => l | Npos p => (r,p)::l end.
Fixpoint add_mult_dev (rP:R) (P:Pol) (fv:list R) (n:N) (lm:list (R*positive)) {struct P} : R := match P with | Pc c => let lm := add_pow_list (hd fv) n lm in mkadd_mult rP c lm | Pinj j Q => add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd fv) n lm) | PX P i Q => let rP := add_mult_dev rP P fv (N.add (Npos i) n) lm in if Q ?== P0 then rP else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd fv) n lm) end.
Fixpoint mult_dev (P:Pol) (fv : list R) (n:N) (lm:list (R*positive)) {struct P} : R := (* P@l * (hd 0 l)^n * lm *) match P with | Pc c => mkmult_c c (add_pow_list (hd fv) n lm) | Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd fv) n lm) | PX P i Q => let rP := mult_dev P fv (N.add (Npos i) n) lm in if Q ?== P0 then rP else let lmq := add_pow_list (hd fv) n lm in add_mult_dev rP Q (tail fv) N0 lmq end.
Definition Pphi_avoid fv P := mult_dev P fv N0 nil.
Fixpoint r_list_pow (l:list (R*positive)) : R := match l with | nil => rI | cons (r,p) l => pow_pos rmul r p * r_list_pow l end.
Hypothesis mkpow_spec : forall r p, mkpow r p == pow_pos rmul r p.
Hypothesis mkopp_pow_spec : forall r p, mkopp_pow r p == - (pow_pos rmul r p).
Hypothesis mkmult_pow_spec : forall r x p, mkmult_pow r x p == r * pow_pos rmul x p.
Lemma mkmult_rec_ok : forall lm r, mkmult_rec r lm == r * r_list_pow lm.
Proof.
intros lm; induction lm as [|a lm IHlm];intros;simpl;Esimpl.
destruct a as (x,p);Esimpl.
rewrite IHlm.
rewrite mkmult_pow_spec.
Esimpl.
Qed.
Lemma mkmult1_ok : forall lm, mkmult1 lm == r_list_pow lm.
Proof.
intros lm; destruct lm as [|p lm];simpl;Esimpl.
destruct p.
rewrite mkmult_rec_ok;rewrite mkpow_spec;Esimpl.
Qed.
Lemma mkmultm1_ok : forall lm, mkmultm1 lm == - r_list_pow lm.
Proof.
intros lm; destruct lm as [|p lm];simpl;Esimpl.
destruct p;rewrite mkmult_rec_ok.
rewrite mkopp_pow_spec;Esimpl.
Qed.
Lemma r_list_pow_rev : forall l, r_list_pow (rev' l) == r_list_pow l.
Proof.
assert (forall l lr : list (R * positive), r_list_pow (rev_append l lr) == r_list_pow lr * r_list_pow l) as H.
-
intros l; induction l as [|a l IHl];intros;simpl;Esimpl.
destruct a as [r p];rewrite IHl;Esimpl.
rewrite (ARmul_comm ARth (pow_pos rmul r p)).
reflexivity.
-
intros;unfold rev'.
rewrite H;simpl;Esimpl.
Qed.
Lemma mkmult_c_pos_ok : forall c lm, mkmult_c_pos c lm == [c]* r_list_pow lm.
Proof.
intros c lm;unfold mkmult_c_pos;simpl.
assert (H := (morph_eq CRmorph) c cI).
rewrite <- r_list_pow_rev; destruct (c ?=! cI).
-
rewrite H;trivial;Esimpl.
apply mkmult1_ok.
-
apply mkmult_rec_ok.
Qed.
Lemma mkmult_c_ok : forall c lm, mkmult_c c lm == [c] * r_list_pow lm.
Proof.
intros c lm;unfold mkmult_c;simpl.
case_eq (get_sign c);intros c0; try intros H.
-
assert (H1 := (morph_eq CRmorph) c0 cI).
destruct (c0 ?=! cI).
+
rewrite (morph_eq CRmorph _ _ (sign_spec get_sign_spec _ H)).
Esimpl.
rewrite H1;trivial.
rewrite <- r_list_pow_rev;trivial;Esimpl.
apply mkmultm1_ok.
+
rewrite <- r_list_pow_rev; apply mkmult_rec_ok.
-
apply mkmult_c_pos_ok.
Qed.
Lemma mkadd_mult_ok : forall rP c lm, mkadd_mult rP c lm == rP + [c]*r_list_pow lm.
Proof.
intros rP c lm;unfold mkadd_mult.
case_eq (get_sign c);intros c0; try intros H.
-
rewrite (morph_eq CRmorph _ _ (sign_spec get_sign_spec _ H));Esimpl.
rewrite mkmult_c_pos_ok;Esimpl.
-
rewrite mkmult_c_pos_ok;Esimpl.
Qed.
Lemma add_pow_list_ok : forall r n l, r_list_pow (add_pow_list r n l) == pow_N rI rmul r n * r_list_pow l.
Proof.
intros r n; destruct n;simpl;intros;Esimpl.
Qed.
Lemma add_mult_dev_ok : forall P rP fv n lm, add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd fv) n * r_list_pow lm.
Proof.
intros P; induction P as [|p P IHP|P2 IHP1 p P3 IHP2];simpl;intros rP fv n lm.
-
rewrite mkadd_mult_ok.
rewrite add_pow_list_ok; Esimpl.
-
rewrite IHP.
simpl.
rewrite add_pow_list_ok; Esimpl.
-
change (match P3 with | Pc c => c ?=! cO | Pinj _ _ => false | PX _ _ _ => false end) with (Peq P3 P0).
change match n with | N0 => Npos p | Npos q => Npos (p + q) end with (N.add (Npos p) n);trivial.
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
+
rewrite (H eq_refl).
rewrite IHP1.
destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
add_permut.
mul_permut.
+
rewrite IHP2.
rewrite IHP1.
destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
add_permut.
mul_permut.
Qed.
Lemma mult_dev_ok : forall P fv n lm, mult_dev P fv n lm == P@fv * pow_N rI rmul (hd fv) n * r_list_pow lm.
Proof.
intros P; induction P as [|p P IHP|P2 IHP1 p P3 IHP2];simpl;intros fv n lm;Esimpl.
-
rewrite mkmult_c_ok;rewrite add_pow_list_ok;Esimpl.
-
rewrite IHP.
simpl;rewrite add_pow_list_ok;Esimpl.
-
change (match P3 with | Pc c => c ?=! cO | Pinj _ _ => false | PX _ _ _ => false end) with (Peq P3 P0).
change match n with | N0 => Npos p | Npos q => Npos (p + q) end with (N.add (Npos p) n);trivial.
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
+
rewrite (H eq_refl).
rewrite IHP1.
destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
mul_permut.
+
rewrite add_mult_dev_ok.
rewrite IHP1; rewrite add_pow_list_ok.
destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
add_permut; mul_permut.
Qed.
Lemma Pphi_avoid_ok : forall P fv, Pphi_avoid fv P == P@fv.
Proof.
unfold Pphi_avoid;intros;rewrite mult_dev_ok;simpl;Esimpl.
Qed.
End EVALUATION.
Definition Pphi_pow := let mkpow x p := match p with xH => x | _ => rpow x (Cp_phi (Npos p)) end in let mkopp_pow x p := ropp (mkpow x p) in let mkmult_pow r x p := rmul r (mkpow x p) in Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma local_mkpow_ok r p : match p with | xI _ => rpow r (Cp_phi (Npos p)) | xO _ => rpow r (Cp_phi (Npos p)) | 1 => r end == pow_pos rmul r p.
Proof.
destruct p; now rewrite ?(rpow_pow_N pow_th).
Qed.
Lemma Pphi_pow_ok : forall P fv, Pphi_pow fv P == P@fv.
Proof.
unfold Pphi_pow;intros;apply Pphi_avoid_ok;intros; now rewrite ?local_mkpow_ok.
Qed.
Lemma ring_rw_pow_correct : forall n lH l, interp_PElist l lH -> forall lmp, mk_monpol_list lH = lmp -> forall pe npe, norm_subst n lmp pe = npe -> PEeval l pe == Pphi_pow l npe.
Proof.
intros n lH l H1 lmp Heq1 pe npe Heq2.
rewrite Pphi_pow_ok, <- Heq2, <- Heq1.
apply norm_subst_ok.
trivial.
Qed.
Fixpoint mkmult_pow (r x:R) (p: positive) {struct p} : R := match p with | xH => r*x | xO p => mkmult_pow (mkmult_pow r x p) x p | xI p => mkmult_pow (mkmult_pow (r*x) x p) x p end.
Definition mkpow x p := match p with | xH => x | xO p => mkmult_pow x x (Pos.pred_double p) | xI p => mkmult_pow x x (xO p) end.
Definition mkopp_pow x p := match p with | xH => -x | xO p => mkmult_pow (-x) x (Pos.pred_double p) | xI p => mkmult_pow (-x) x (xO p) end.
Definition Pphi_dev := Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma mkmult_pow_ok p r x : mkmult_pow r x p == r * x^p.
Proof.
revert r; induction p as [p IHp|p IHp|];intros;simpl;Esimpl;rewrite !IHp;Esimpl.
Qed.
Lemma mkpow_ok p x : mkpow x p == x^p.
Proof.
destruct p;simpl;intros;Esimpl.
-
rewrite !mkmult_pow_ok;Esimpl.
-
rewrite mkmult_pow_ok;Esimpl.
change x with (x^1) at 1.
now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double.
Qed.
Lemma mkopp_pow_ok p x : mkopp_pow x p == - x^p.
Proof.
destruct p;simpl;intros;Esimpl.
-
rewrite !mkmult_pow_ok;Esimpl.
-
rewrite mkmult_pow_ok;Esimpl.
change x with (x^1) at 1.
now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double.
Qed.
Lemma Pphi_dev_ok : forall P fv, Pphi_dev fv P == P@fv.
Proof.
unfold Pphi_dev;intros;apply Pphi_avoid_ok.
-
intros;apply mkpow_ok.
-
intros;apply mkopp_pow_ok.
-
intros;apply mkmult_pow_ok.
Qed.
Lemma ring_rw_correct : forall n lH l, interp_PElist l lH -> forall lmp, mk_monpol_list lH = lmp -> forall pe npe, norm_subst n lmp pe = npe -> PEeval l pe == Pphi_dev l npe.
Proof.
intros n lH l H1 lmp Heq1 pe npe Heq2.
rewrite Pphi_dev_ok.
rewrite <- Heq2;rewrite <- Heq1.
apply norm_subst_ok.
trivial.
Qed.
End MakeRingPol.
Arguments PEO {C}.
Arguments PEI {C}.