Timings for Zbool.v

  1. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./ZArith/Zbool.timing
  2. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./ZArith/Zbool.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************)
Require Import BinInt.
Require Import Zeven.
Require Import Zorder.
Require Import Zcompare.
Require Import ZArith_dec.
Require Import Sumbool.
Local Open Scope Z_scope.
(** * Boolean operations from decidability of order *) (** The decidability of equality and order relations over type [Z] gives some boolean functions with the adequate specification. *)
Definition Z_lt_ge_bool (x y:Z) := bool_of_sumbool (Z_lt_ge_dec x y).
Definition Z_ge_lt_bool (x y:Z) := bool_of_sumbool (Z_ge_lt_dec x y).
Definition Z_le_gt_bool (x y:Z) := bool_of_sumbool (Z_le_gt_dec x y).
Definition Z_gt_le_bool (x y:Z) := bool_of_sumbool (Z_gt_le_dec x y).
Definition Z_eq_bool (x y:Z) := bool_of_sumbool (Z.eq_dec x y).
Definition Z_noteq_bool (x y:Z) := bool_of_sumbool (Z_noteq_dec x y).
Definition Zeven_odd_bool (x:Z) := bool_of_sumbool (Zeven_odd_dec x).
(**********************************************************************) (** * Boolean comparisons of binary integers *)
Notation Zle_bool := Z.leb (only parsing).
Notation Zge_bool := Z.geb (only parsing).
Notation Zlt_bool := Z.ltb (only parsing).
Notation Zgt_bool := Z.gtb (only parsing).
(** We now provide a direct [Z.eqb] that doesn't refer to [Z.compare]. The old [Zeq_bool] is kept for compatibility. *)
Definition Zeq_bool (x y:Z) := match x ?= y with | Eq => true | _ => false end.
Definition Zneq_bool (x y:Z) := match x ?= y with | Eq => false | _ => true end.
(** Properties in term of [if ... then ... else ...] *)
Lemma Zle_cases n m : if n <=? m then n <= m else n > m.
Proof.
case Z.leb_spec; now Z.swap_greater.
Qed.
Lemma Zlt_cases n m : if n <? m then n < m else n >= m.
Proof.
case Z.ltb_spec; now Z.swap_greater.
Qed.
Lemma Zge_cases n m : if n >=? m then n >= m else n < m.
Proof.
rewrite Z.geb_leb.
case Z.leb_spec; now Z.swap_greater.
Qed.
Lemma Zgt_cases n m : if n >? m then n > m else n <= m.
Proof.
rewrite Z.gtb_ltb.
case Z.ltb_spec; now Z.swap_greater.
Qed.
(** Lemmas on [Z.leb] used in contrib/graphs *)
Lemma Zle_bool_imp_le n m : (n <=? m) = true -> (n <= m).
Proof.
apply Z.leb_le.
Qed.
Lemma Zle_imp_le_bool n m : (n <= m) -> (n <=? m) = true.
Proof.
apply Z.leb_le.
Qed.
Notation Zle_bool_refl := Z.leb_refl (only parsing).
Lemma Zle_bool_antisym n m : (n <=? m) = true -> (m <=? n) = true -> n = m.
Proof.
rewrite !Z.leb_le.
apply Z.le_antisymm.
Qed.
Lemma Zle_bool_trans n m p : (n <=? m) = true -> (m <=? p) = true -> (n <=? p) = true.
Proof.
rewrite !Z.leb_le.
apply Z.le_trans.
Qed.
Definition Zle_bool_total x y : { x <=? y = true } + { y <=? x = true }.
Proof.
case_eq (x <=? y); intros H.
-
left; trivial.
-
right.
apply Z.leb_gt in H.
now apply Z.leb_le, Z.lt_le_incl.
Defined.
Lemma Zle_bool_plus_mono n m p q : (n <=? m) = true -> (p <=? q) = true -> (n + p <=? m + q) = true.
Proof.
rewrite !Z.leb_le.
apply Z.add_le_mono.
Qed.
Lemma Zone_pos : 1 <=? 0 = false.
Proof.
reflexivity.
Qed.
Lemma Zone_min_pos n : (n <=? 0) = false -> (1 <=? n) = true.
Proof.
rewrite Z.leb_le, Z.leb_gt.
apply Z.le_succ_l.
Qed.
(** Properties in term of [iff] *)
Lemma Zle_is_le_bool n m : (n <= m) <-> (n <=? m) = true.
Proof.
symmetry.
apply Z.leb_le.
Qed.
Lemma Zge_is_le_bool n m : (n >= m) <-> (m <=? n) = true.
Proof.
Z.swap_greater.
symmetry.
apply Z.leb_le.
Qed.
Lemma Zlt_is_lt_bool n m : (n < m) <-> (n <? m) = true.
Proof.
symmetry.
apply Z.ltb_lt.
Qed.
Lemma Zgt_is_gt_bool n m : (n > m) <-> (n >? m) = true.
Proof.
Z.swap_greater.
rewrite Z.gtb_ltb.
symmetry.
apply Z.ltb_lt.
Qed.
Lemma Zlt_is_le_bool n m : (n < m) <-> (n <=? m - 1) = true.
Proof.
rewrite Z.leb_le.
apply Z.lt_le_pred.
Qed.
Lemma Zgt_is_le_bool n m : (n > m) <-> (m <=? n - 1) = true.
Proof.
Z.swap_greater.
rewrite Z.leb_le.
apply Z.lt_le_pred.
Qed.
(** Properties of the deprecated [Zeq_bool] *)
Lemma Zeq_is_eq_bool x y : x = y <-> Zeq_bool x y = true.
Proof.
unfold Zeq_bool.
rewrite <- Z.compare_eq_iff.
destruct Z.compare; now split.
Qed.
Lemma Zeq_bool_eq x y : Zeq_bool x y = true -> x = y.
Proof.
apply Zeq_is_eq_bool.
Qed.
Lemma Zeq_bool_neq x y : Zeq_bool x y = false -> x <> y.
Proof.
rewrite Zeq_is_eq_bool; now destruct Zeq_bool.
Qed.
Lemma Zeq_bool_if x y : if Zeq_bool x y then x=y else x<>y.
Proof.
generalize (Zeq_bool_eq x y) (Zeq_bool_neq x y).
destruct Zeq_bool; auto.
Qed.