Timings for Uint63.v

  1. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/Cyclic/Int63/Uint63.timing
  2. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/Cyclic/Int63/Uint63.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) (************************************************************************)
Require Import Utf8.
Require Export DoubleType.
Require Import Lia.
Require Import Zpow_facts.
Require Import Zgcd_alt.
Require ZArith.
Import Znumtheory.
Require Export PrimInt63.
Definition size := 63%nat.
Notation int := int (only parsing).
Notation lsl := lsl (only parsing).
Notation lsr := lsr (only parsing).
Notation land := land (only parsing).
Notation lor := lor (only parsing).
Notation lxor := lxor (only parsing).
Notation add := add (only parsing).
Notation sub := sub (only parsing).
Notation mul := mul (only parsing).
Notation mulc := mulc (only parsing).
Notation div := div (only parsing).
Notation mod := mod (only parsing).
Notation eqb := eqb (only parsing).
Notation ltb := ltb (only parsing).
Notation leb := leb (only parsing).
Local Open Scope uint63_scope.
Module Import Uint63NotationsInternalB.
Infix "<<" := lsl (at level 30, no associativity) : uint63_scope.
Infix ">>" := lsr (at level 30, no associativity) : uint63_scope.
Infix "land" := land (at level 40, left associativity) : uint63_scope.
Infix "lor" := lor (at level 40, left associativity) : uint63_scope.
Infix "lxor" := lxor (at level 40, left associativity) : uint63_scope.
Infix "+" := add : uint63_scope.
Infix "-" := sub : uint63_scope.
Infix "*" := mul : uint63_scope.
Infix "/" := div : uint63_scope.
Infix "mod" := mod (at level 40, no associativity) : uint63_scope.
Infix "=?" := eqb (at level 70, no associativity) : uint63_scope.
Infix "<?" := ltb (at level 70, no associativity) : uint63_scope.
Infix "<=?" := leb (at level 70, no associativity) : uint63_scope.
Infix "≤?" := leb (at level 70, no associativity) : uint63_scope.
End Uint63NotationsInternalB.
(** The number of digits as a int *)
Definition digits := 63.
(** The bigger int *)
Definition max_int := Eval vm_compute in 0 - 1.
Register Inline max_int.
(** Access to the nth digits *)
Definition get_digit x p := (0 <? (x land (1 << p))).
Definition set_digit x p (b:bool) := if if 0 <=? p then p <? digits else false then if b then x lor (1 << p) else x land (max_int lxor (1 << p)) else x.
(** Equality to 0 *)
Definition is_zero (i:int) := i =? 0.
Register Inline is_zero.
(** Parity *)
Definition is_even (i:int) := is_zero (i land 1).
Register Inline is_even.
(** Bit *)
Definition bit i n := negb (is_zero ((i >> n) << (digits - 1))).
(* Register bit as PrimInline. *) (** Extra modulo operations *)
Definition opp (i:int) := 0 - i.
Register Inline opp.
Definition oppcarry i := max_int - i.
Register Inline oppcarry.
Definition succ i := i + 1.
Register Inline succ.
Definition pred i := i - 1.
Register Inline pred.
Definition addcarry i j := i + j + 1.
Register Inline addcarry.
Definition subcarry i j := i - j - 1.
Register Inline subcarry.
(** Exact arithmetic operations *)
Definition addc_def x y := let r := x + y in if r <? x then C1 r else C0 r.
Notation addc := addc (only parsing).
Definition addcarryc_def x y := let r := addcarry x y in if r <=? x then C1 r else C0 r.
Notation addcarryc := addcarryc (only parsing).
Definition subc_def x y := if y <=? x then C0 (x - y) else C1 (x - y).
Notation subc := subc (only parsing).
Definition subcarryc_def x y := if y <? x then C0 (x - y - 1) else C1 (x - y - 1).
Notation subcarryc := subcarryc (only parsing).
Definition diveucl_def x y := (x/y, x mod y).
Notation diveucl := diveucl (only parsing).
Notation diveucl_21 := diveucl_21 (only parsing).
Definition addmuldiv_def p x y := (x << p) lor (y >> (digits - p)).
Notation addmuldiv := addmuldiv (only parsing).
Module Import Uint63NotationsInternalC.
Notation "- x" := (opp x) : uint63_scope.
Notation "n '+c' m" := (addc n m) (at level 50, no associativity) : uint63_scope.
Notation "n '-c' m" := (subc n m) (at level 50, no associativity) : uint63_scope.
End Uint63NotationsInternalC.
Definition oppc (i:int) := 0 -c i.
Register Inline oppc.
Definition succc i := i +c 1.
Register Inline succc.
Definition predc i := i -c 1.
Register Inline predc.
(** Comparison *)
Definition compare_def x y := if x <? y then Lt else if (x =? y) then Eq else Gt.
Notation compare := compare (only parsing).
Import Bool ZArith.
(** Translation to Z *)
Fixpoint to_Z_rec (n:nat) (i:int) := match n with | O => 0%Z | S n => (if is_even i then Z.double else Zdouble_plus_one) (to_Z_rec n (i >> 1)) end.
Definition to_Z := to_Z_rec size.
Fixpoint of_pos_rec (n:nat) (p:positive) {struct p} := match n, p with | O, _ => 0 | S n, xH => 1 | S n, xO p => (of_pos_rec n p) << 1 | S n, xI p => (of_pos_rec n p) << 1 lor 1 end.
Definition of_pos := of_pos_rec size.
Definition of_Z z := match z with | Zpos p => of_pos p | Z0 => 0 | Zneg p => - (of_pos p) end.
Definition wB := (2 ^ (Z.of_nat size))%Z.
Module Import Uint63NotationsInternalD.
Notation "n ?= m" := (compare n m) (at level 70, no associativity) : uint63_scope.
Notation "'φ' x" := (to_Z x) (at level 0) : uint63_scope.
Notation "'Φ' x" := (zn2z_to_Z wB to_Z x) (at level 0) : uint63_scope.
End Uint63NotationsInternalD.
Lemma to_Z_rec_bounded size : forall x, (0 <= to_Z_rec size x < 2 ^ Z.of_nat size)%Z.
Proof.
elim size.
-
simpl; auto with zarith.
-
intros n ih x; rewrite inj_S; simpl; assert (W := ih (x >> 1)%uint63).
rewrite Z.pow_succ_r; auto with zarith.
destruct (is_even x).
+
rewrite Zdouble_mult; auto with zarith.
+
rewrite Zdouble_plus_one_mult; auto with zarith.
Qed.
Corollary to_Z_bounded : forall x, (0 <= φ x < wB)%Z.
Proof.
apply to_Z_rec_bounded.
Qed.
(* =================================================== *)
Local Open Scope Z_scope.
(* General arithmetic results *)
Theorem Zmod_distr: forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a -> (2 ^a * r + t) mod (2 ^ b) = (2 ^a * r) mod (2 ^ b) + t.
Proof.
intros a b r t ? ? ?.
replace (2^b) with (2^a * 2^(b-a)) by (rewrite <-Zpower_exp; [f_equal| |]; lia).
assert (0 < 2 ^ (b - a)) by (apply Z.pow_pos_nonneg; lia).
rewrite Z.add_mul_mod_distr_l, <- Z.mul_mod_distr_l; lia.
Qed.
(* Results about pow2 *)
Lemma pow2_pos n : 0 <= n → 2 ^ n > 0.
Proof.
intros h; apply Z.lt_gt, Zpower_gt_0; lia.
Qed.
Lemma pow2_nz n : 0 <= n → 2 ^ n ≠ 0.
Proof.
intros h; generalize (pow2_pos _ h); lia.
Qed.
#[global] Hint Resolve pow2_pos pow2_nz : zarith.
(* =================================================== *) (** Trivial lemmas without axiom *)
Lemma wB_diff_0 : wB <> 0.
Proof.
exact (fun x => let 'eq_refl := x in idProp).
Qed.
Lemma wB_pos : 0 < wB.
Proof.
reflexivity.
Qed.
Lemma to_Z_0 : φ 0 = 0.
Proof.
reflexivity.
Qed.
Lemma to_Z_1 : φ 1 = 1.
Proof.
reflexivity.
Qed.
(* Notations *)
Local Open Scope Z_scope.
Local Notation "[+| c |]" := (interp_carry 1 wB to_Z c) (at level 0, c at level 99) : uint63_scope.
Local Notation "[-| c |]" := (interp_carry (-1) wB to_Z c) (at level 0, c at level 99) : uint63_scope.
(* Bijection : uint63 <-> Bvector size *)
Axiom of_to_Z : forall x, of_Z φ x = x.
Lemma can_inj {rT aT} {f: aT -> rT} {g: rT -> aT} (K: forall a, g (f a) = a) {a a'} (e: f a = f a') : a = a'.
Proof.
generalize (K a) (K a').
congruence.
Qed.
Lemma to_Z_inj x y : φ x = φ y → x = y.
Proof.
exact (λ e, can_inj of_to_Z e).
Qed.
(** Specification of logical operations *)
Local Open Scope Z_scope.
Axiom lsl_spec : forall x p, φ (x << p) = φ x * 2 ^ φ p mod wB.
Axiom lsr_spec : forall x p, φ (x >> p) = φ x / 2 ^ φ p.
Axiom land_spec: forall x y i , bit (x land y) i = bit x i && bit y i.
Axiom lor_spec: forall x y i, bit (x lor y) i = bit x i || bit y i.
Axiom lxor_spec: forall x y i, bit (x lxor y) i = xorb (bit x i) (bit y i).
(** Specification of basic opetations *) (* Arithmetic modulo operations *) (* Remarque : les axiomes seraient plus simple si on utilise of_Z a la place : exemple : add_spec : forall x y, of_Z (x + y) = of_Z x + of_Z y. *)
Axiom add_spec : forall x y, φ (x + y) = (φ x + φ y) mod wB.
Axiom sub_spec : forall x y, φ (x - y) = (φ x - φ y) mod wB.
Axiom mul_spec : forall x y, φ (x * y) = φ x * φ y mod wB.
Axiom mulc_spec : forall x y, φ x * φ y = φ (fst (mulc x y)) * wB + φ (snd (mulc x y)).
Axiom div_spec : forall x y, φ (x / y) = φ x / φ y.
Axiom mod_spec : forall x y, φ (x mod y) = φ x mod φ y.
(* Comparisons *)
Axiom eqb_correct : forall i j, (i =? j)%uint63 = true -> i = j.
Axiom eqb_refl : forall x, (x =? x)%uint63 = true.
Axiom ltb_spec : forall x y, (x <? y)%uint63 = true <-> φ x < φ y.
Axiom leb_spec : forall x y, (x <=? y)%uint63 = true <-> φ x <= φ y.
(** Exotic operations *) (** I should add the definition (like for compare) *)
Notation head0 := head0 (only parsing).
Notation tail0 := tail0 (only parsing).
(** Axioms on operations which are just short cut *)
Axiom compare_def_spec : forall x y, compare x y = compare_def x y.
Axiom head0_spec : forall x, 0 < φ x -> wB/ 2 <= 2 ^ (φ (head0 x)) * φ x < wB.
Axiom tail0_spec : forall x, 0 < φ x -> (exists y, 0 <= y /\ φ x = (2 * y + 1) * (2 ^ φ (tail0 x)))%Z.
Axiom addc_def_spec : forall x y, (x +c y)%uint63 = addc_def x y.
Axiom addcarryc_def_spec : forall x y, addcarryc x y = addcarryc_def x y.
Axiom subc_def_spec : forall x y, (x -c y)%uint63 = subc_def x y.
Axiom subcarryc_def_spec : forall x y, subcarryc x y = subcarryc_def x y.
Axiom diveucl_def_spec : forall x y, diveucl x y = diveucl_def x y.
Axiom diveucl_21_spec : forall a1 a2 b, let (q,r) := diveucl_21 a1 a2 b in let (q',r') := Z.div_eucl (φ a1 * wB + φ a2) φ b in φ a1 < φ b -> φ q = q' /\ φ r = r'.
Axiom addmuldiv_def_spec : forall p x y, addmuldiv p x y = addmuldiv_def p x y.
(** Square root functions using newton iteration **)
Local Open Scope uint63_scope.
Definition sqrt_step (rec: int -> int -> int) (i j: int) := let quo := i / j in if quo <? j then rec i ((j + quo) >> 1) else j.
Definition iter_sqrt := Eval lazy beta delta [sqrt_step] in fix iter_sqrt (n: nat) (rec: int -> int -> int) (i j: int) {struct n} : int := sqrt_step (fun i j => match n with O => rec i j | S n => (iter_sqrt n (iter_sqrt n rec)) i j end) i j.
Definition sqrt i := match compare 1 i with Gt => 0 | Eq => 1 | Lt => iter_sqrt size (fun i j => j) i (i >> 1) end.
Definition high_bit := 1 << (digits - 1).
Definition sqrt2_step (rec: int -> int -> int -> int) (ih il j: int) := if ih <? j then let (quo,_) := diveucl_21 ih il j in if quo <? j then match j +c quo with | C0 m1 => rec ih il (m1 >> 1) | C1 m1 => rec ih il ((m1 >> 1) + high_bit) end else j else j.
Definition iter2_sqrt := Eval lazy beta delta [sqrt2_step] in fix iter2_sqrt (n: nat) (rec: int -> int -> int -> int) (ih il j: int) {struct n} : int := sqrt2_step (fun ih il j => match n with | O => rec ih il j | S n => (iter2_sqrt n (iter2_sqrt n rec)) ih il j end) ih il j.
Definition sqrt2 ih il := let s := iter2_sqrt size (fun ih il j => j) ih il max_int in let (ih1, il1) := mulc s s in match il -c il1 with | C0 il2 => if ih1 <? ih then (s, C1 il2) else (s, C0 il2) | C1 il2 => if ih1 <? (ih - 1) then (s, C1 il2) else (s, C0 il2) end.
(** Gcd **)
Fixpoint gcd_rec (guard:nat) (i j:int) {struct guard} := match guard with | O => 1 | S p => if j =? 0 then i else gcd_rec p j (i mod j) end.
Definition gcd := gcd_rec (2*size).
(** equality *)
Lemma eqb_complete : forall x y, x = y -> (x =? y) = true.
Proof.
intros x y H; rewrite -> H, eqb_refl;trivial.
Qed.
Lemma eqb_spec : forall x y, (x =? y) = true <-> x = y.
Proof.
split;auto using eqb_correct, eqb_complete.
Qed.
Lemma eqb_false_spec : forall x y, (x =? y) = false <-> x <> y.
Proof.
intros;rewrite <- not_true_iff_false, eqb_spec;split;trivial.
Qed.
Lemma eqb_false_complete : forall x y, x <> y -> (x =? y) = false.
Proof.
intros x y;rewrite eqb_false_spec;trivial.
Qed.
Lemma eqb_false_correct : forall x y, (x =? y) = false -> x <> y.
Proof.
intros x y;rewrite eqb_false_spec;trivial.
Qed.
Definition eqs (i j : int) : {i = j} + { i <> j } := (if i =? j as b return ((b = true -> i = j) -> (b = false -> i <> j) -> {i=j} + {i <> j} ) then fun (Heq : true = true -> i = j) _ => left _ (Heq (eq_refl true)) else fun _ (Hdiff : false = false -> i <> j) => right _ (Hdiff (eq_refl false))) (eqb_correct i j) (eqb_false_correct i j).
Lemma eq_dec : forall i j:int, i = j \/ i <> j.
Proof.
intros i j;destruct (eqs i j);auto.
Qed.
(* Extra function on equality *)
Definition cast i j := (if i =? j as b return ((b = true -> i = j) -> option (forall P : int -> Type, P i -> P j)) then fun Heq : true = true -> i = j => Some (fun (P : int -> Type) (Hi : P i) => match Heq (eq_refl true) in (_ = y) return (P y) with | eq_refl => Hi end) else fun _ : false = true -> i = j => None) (eqb_correct i j).
Lemma cast_refl : forall i, cast i i = Some (fun P H => H).
Proof.
unfold cast;intros i.
generalize (eqb_correct i i).
rewrite eqb_refl;intros e.
rewrite (Eqdep_dec.eq_proofs_unicity eq_dec (e (eq_refl true)) (eq_refl i));trivial.
Qed.
Lemma cast_diff : forall i j, i =? j = false -> cast i j = None.
Proof.
intros i j H;unfold cast;intros; generalize (eqb_correct i j).
rewrite H;trivial.
Qed.
Definition eqo i j := (if i =? j as b return ((b = true -> i = j) -> option (i=j)) then fun Heq : true = true -> i = j => Some (Heq (eq_refl true)) else fun _ : false = true -> i = j => None) (eqb_correct i j).
Lemma eqo_refl : forall i, eqo i i = Some (eq_refl i).
Proof.
unfold eqo;intros i.
generalize (eqb_correct i i).
rewrite eqb_refl;intros e.
rewrite (Eqdep_dec.eq_proofs_unicity eq_dec (e (eq_refl true)) (eq_refl i));trivial.
Qed.
Lemma eqo_diff : forall i j, i =? j = false -> eqo i j = None.
Proof.
unfold eqo;intros i j H; generalize (eqb_correct i j).
rewrite H;trivial.
Qed.
(** Comparison *)
Lemma eqbP x y : reflect (φ x = φ y ) (x =? y).
Proof.
apply iff_reflect; rewrite eqb_spec; split; [ apply to_Z_inj | apply f_equal ].
Qed.
Lemma ltbP x y : reflect (φ x < φ y )%Z (x <? y).
Proof.
apply iff_reflect; symmetry; apply ltb_spec.
Qed.
Lemma lebP x y : reflect (φ x <= φ y )%Z (x ≤? y).
Proof.
apply iff_reflect; symmetry; apply leb_spec.
Qed.
Lemma compare_spec x y : compare x y = (φ x ?= φ y)%Z.
Proof.
rewrite compare_def_spec; unfold compare_def.
case ltbP; [ auto using Z.compare_lt_iff | intros hge ].
case eqbP; [ now symmetry; apply Z.compare_eq_iff | intros hne ].
symmetry; apply Z.compare_gt_iff; lia.
Qed.
Lemma is_zero_spec x : is_zero x = true <-> x = 0%uint63.
Proof.
apply eqb_spec.
Qed.
Lemma diveucl_spec x y : let (q,r) := diveucl x y in (φ q , φ r ) = Z.div_eucl φ x φ y .
Proof.
rewrite diveucl_def_spec; unfold diveucl_def; rewrite div_spec, mod_spec; unfold Z.div, Z.modulo.
destruct (Z.div_eucl φ x φ y ); trivial.
Qed.
Local Open Scope Z_scope.
(** Addition *)
Lemma addc_spec x y : [+| x +c y |] = φ x + φ y .
Proof.
rewrite addc_def_spec; unfold addc_def, interp_carry.
pose proof (to_Z_bounded x); pose proof (to_Z_bounded y).
case ltbP; rewrite add_spec.
-
case (Z_lt_ge_dec (φ x + φ y ) wB).
+
intros k; rewrite Zmod_small; lia.
+
intros hge; rewrite <- (Zmod_unique _ _ 1 (φ x + φ y - wB)); lia.
-
case (Z_lt_ge_dec (φ x + φ y ) wB).
+
intros k; rewrite Zmod_small; lia.
+
intros hge; rewrite <- (Zmod_unique _ _ 1 (φ x + φ y - wB)); lia.
Qed.
Lemma succ_spec x : φ (succ x) = (φ x + 1) mod wB.
Proof.
apply add_spec.
Qed.
Lemma succc_spec x : [+| succc x |] = φ x + 1.
Proof.
apply addc_spec.
Qed.
Lemma addcarry_spec x y : φ (addcarry x y) = (φ x + φ y + 1) mod wB.
Proof.
unfold addcarry; rewrite -> !add_spec, Zplus_mod_idemp_l; trivial.
Qed.
Lemma addcarryc_spec x y : [+| addcarryc x y |] = φ x + φ y + 1.
Proof.
rewrite addcarryc_def_spec; unfold addcarryc_def, interp_carry.
pose proof (to_Z_bounded x); pose proof (to_Z_bounded y).
case lebP; rewrite addcarry_spec.
-
case (Z_lt_ge_dec (φ x + φ y + 1) wB).
+
intros hlt; rewrite Zmod_small; lia.
+
intros hge; rewrite <- (Zmod_unique _ _ 1 (φ x + φ y + 1 - wB)); lia.
-
case (Z_lt_ge_dec (φ x + φ y + 1) wB).
+
intros hlt; rewrite Zmod_small; lia.
+
intros hge; rewrite <- (Zmod_unique _ _ 1 (φ x + φ y + 1 - wB)); lia.
Qed.
(** Subtraction *)
Lemma subc_spec x y : [-| x -c y |] = φ x - φ y .
Proof.
rewrite subc_def_spec; unfold subc_def; unfold interp_carry.
pose proof (to_Z_bounded x); pose proof (to_Z_bounded y).
case lebP.
-
intros hle; rewrite sub_spec, Z.mod_small; lia.
-
intros hgt; rewrite sub_spec, <- (Zmod_unique _ wB (-1) (φ x - φ y + wB)); lia.
Qed.
Lemma pred_spec x : φ (pred x) = (φ x - 1) mod wB.
Proof.
apply sub_spec.
Qed.
Lemma predc_spec x : [-| predc x |] = φ x - 1.
Proof.
apply subc_spec.
Qed.
Lemma oppc_spec x : [-| oppc x |] = - φ x .
Proof.
unfold oppc; rewrite -> subc_spec, to_Z_0; trivial.
Qed.
Lemma opp_spec x : φ (- x) = - φ x mod wB.
Proof.
unfold opp; rewrite -> sub_spec, to_Z_0; trivial.
Qed.
Lemma oppcarry_spec x : φ (oppcarry x) = wB - φ x - 1.
Proof.
unfold oppcarry; rewrite sub_spec.
rewrite <- Zminus_plus_distr, Zplus_comm, Zminus_plus_distr.
apply Zmod_small.
generalize (to_Z_bounded x); auto with zarith.
Qed.
Lemma subcarry_spec x y : φ (subcarry x y) = (φ x - φ y - 1) mod wB.
Proof.
unfold subcarry; rewrite !sub_spec, Zminus_mod_idemp_l; trivial.
Qed.
Lemma subcarryc_spec x y : [-| subcarryc x y |] = φ x - φ y - 1.
Proof.
rewrite subcarryc_def_spec; unfold subcarryc_def, interp_carry; fold (subcarry x y).
pose proof (to_Z_bounded x); pose proof (to_Z_bounded y).
case ltbP; rewrite subcarry_spec.
-
intros hlt; rewrite Zmod_small; lia.
-
intros hge; rewrite <- (Zmod_unique _ _ (-1) (φ x - φ y - 1 + wB)); lia.
Qed.
(** GCD *)
Lemma to_Z_gcd : forall i j, φ (gcd i j) = Zgcdn (2 * size) (φ j) (φ i).
Proof.
unfold gcd.
elim (2*size)%nat.
-
reflexivity.
-
intros n ih i j; simpl.
pose proof (to_Z_bounded j) as hj; pose proof (to_Z_bounded i).
case eqbP; rewrite to_Z_0.
+
intros ->; rewrite Z.abs_eq; lia.
+
intros hne; rewrite ih; clear ih.
rewrite <- mod_spec.
revert hj hne; case φ j ; intros; lia.
Qed.
Lemma gcd_spec a b : Zis_gcd (φ a) (φ b) (φ (gcd a b)).
Proof.
rewrite to_Z_gcd.
apply Zis_gcd_sym.
apply Zgcdn_is_gcd.
unfold Zgcd_bound.
generalize (to_Z_bounded b).
destruct φ b as [|p|p].
-
unfold size; auto with zarith.
-
intros (_,H).
cut (Psize p <= size)%nat; [ lia | rewrite <- Zpower2_Psize; auto].
-
intros (H,_); compute in H; elim H; auto.
Qed.
(** Head0, Tail0 *)
Lemma head00_spec x : φ x = 0 -> φ (head0 x) = φ digits .
Proof.
now intros h; rewrite (to_Z_inj _ 0 h).
Qed.
Lemma tail00_spec x : φ x = 0 -> φ (tail0 x) = φ digits.
Proof.
now intros h; rewrite (to_Z_inj _ 0 h).
Qed.
Infix "≡" := (eqm wB) (at level 70, no associativity) : uint63_scope.
Lemma eqm_mod x y : x mod wB ≡ y mod wB → x ≡ y.
Proof.
intros h.
eapply (eqm_trans).
-
apply eqm_sym; apply Zmod_eqm.
-
apply (eqm_trans _ _ _ _ h).
apply Zmod_eqm.
Qed.
Lemma eqm_sub x y : x ≡ y → x - y ≡ 0.
Proof.
intros h; unfold eqm; rewrite Zminus_mod, h, Z.sub_diag; reflexivity.
Qed.
Lemma eqmE x y : x ≡ y → ∃ k, x - y = k * wB.
Proof.
intros h.
exact (Zmod_divide (x - y) wB (λ e, let 'eq_refl := e in I) (eqm_sub _ _ h)).
Qed.
Lemma eqm_subE x y : x ≡ y ↔ x - y ≡ 0.
Proof.
split.
-
apply eqm_sub.
-
intros h; case (eqmE _ _ h); clear h; intros q h.
assert (y = x - q * wB) by lia.
clear h; subst y.
unfold eqm; rewrite Zminus_mod, Z_mod_mult, Z.sub_0_r, Zmod_mod; reflexivity.
Qed.
Lemma int_eqm x y : x = y → φ x ≡ φ y.
Proof.
unfold eqm; intros ->; reflexivity.
Qed.
Lemma eqmI x y : φ x ≡ φ y → x = y.
Proof.
unfold eqm.
repeat rewrite Zmod_small by apply to_Z_bounded.
apply to_Z_inj.
Qed.
(* ADD *)
Lemma add_assoc x y z: (x + (y + z) = (x + y) + z)%uint63.
Proof.
apply to_Z_inj; rewrite !add_spec.
rewrite -> Zplus_mod_idemp_l, Zplus_mod_idemp_r, Zplus_assoc; auto.
Qed.
Lemma add_comm x y: (x + y = y + x)%uint63.
Proof.
apply to_Z_inj; rewrite -> !add_spec, Zplus_comm; auto.
Qed.
Lemma add_le_r m n: if (n <=? m + n)%uint63 then (φ m + φ n < wB)%Z else (wB <= φ m + φ n)%Z.
Proof.
case (to_Z_bounded m); intros H1m H2m.
case (to_Z_bounded n); intros H1n H2n.
case (Zle_or_lt wB (φ m + φ n)); intros H.
-
assert (H1: (φ (m + n) = φ m + φ n - wB)%Z).
{
rewrite add_spec.
replace ((φ m + φ n) mod wB)%Z with ((((φ m + φ n) - wB) + wB) mod wB)%Z.
-
rewrite -> Zplus_mod, Z_mod_same_full, Zplus_0_r, !Zmod_small; auto with zarith.
rewrite !Zmod_small; auto with zarith.
-
apply (f_equal2 Z.modulo); auto with zarith.
}
case_eq (n <=? m + n)%uint63; auto.
rewrite leb_spec, H1; auto with zarith.
-
assert (H1: (φ (m + n) = φ m + φ n)%Z).
{
rewrite add_spec, Zmod_small; auto with zarith.
}
replace (n <=? m + n)%uint63 with true; auto.
apply sym_equal; rewrite leb_spec, H1; auto with zarith.
Qed.
Lemma add_cancel_l x y z : (x + y = x + z)%uint63 -> y = z.
Proof.
intros h; apply int_eqm in h; rewrite !add_spec in h; apply eqm_mod, eqm_sub in h.
replace (_ + _ - _) with (φ(y) - φ(z)) in h by lia.
rewrite <- eqm_subE in h.
apply eqmI, h.
Qed.
Lemma add_cancel_r x y z : (y + x = z + x)%uint63 -> y = z.
Proof.
rewrite !(fun t => add_comm t x); intros Hl; apply (add_cancel_l x); auto.
Qed.
Coercion b2i (b: bool) : int := if b then 1%uint63 else 0%uint63.
(* LSR *)
Lemma lsr0 i : 0 >> i = 0%uint63.
Proof.
apply to_Z_inj; rewrite lsr_spec; reflexivity.
Qed.
Lemma lsr_0_r i: i >> 0 = i.
Proof.
apply to_Z_inj; rewrite lsr_spec, Zdiv_1_r; exact eq_refl.
Qed.
Lemma lsr_1 n : 1 >> n = (n =? 0)%uint63.
Proof.
case eqbP.
-
intros h; rewrite (to_Z_inj _ _ h), lsr_0_r; reflexivity.
-
intros Hn.
assert (H1n : (1 >> n = 0)%uint63); auto.
apply to_Z_inj; rewrite lsr_spec.
apply Zdiv_small; rewrite to_Z_1; split; auto with zarith.
change 1%Z with (2^0)%Z.
apply Zpower_lt_monotone; split; auto with zarith.
rewrite to_Z_0 in Hn.
generalize (to_Z_bounded n).
lia.
Qed.
Lemma lsr_add i m n: ((i >> m) >> n = if n <=? m + n then i >> (m + n) else 0)%uint63.
Proof.
case (to_Z_bounded m); intros H1m H2m.
case (to_Z_bounded n); intros H1n H2n.
case (to_Z_bounded i); intros H1i H2i.
generalize (add_le_r m n); case (n <=? m + n)%uint63; intros H.
-
apply to_Z_inj; rewrite -> !lsr_spec, Zdiv_Zdiv, <- Zpower_exp; auto with zarith.
rewrite add_spec, Zmod_small; auto with zarith.
-
apply to_Z_inj; rewrite -> !lsr_spec, Zdiv_Zdiv, <- Zpower_exp; auto with zarith.
apply Zdiv_small.
split; [ auto with zarith | ].
eapply Z.lt_le_trans; [ | apply Zpower2_le_lin ]; auto with zarith.
Qed.
(* LSL *)
Lemma lsl0 i: 0 << i = 0%uint63.
Proof.
apply to_Z_inj.
generalize (lsl_spec 0 i).
rewrite to_Z_0, Zmult_0_l, Zmod_0_l; auto.
Qed.
Lemma lsl0_r i : i << 0 = i.
Proof.
apply to_Z_inj.
rewrite -> lsl_spec, to_Z_0, Z.mul_1_r.
apply Zmod_small; apply (to_Z_bounded i).
Qed.
Lemma lsl_add_distr x y n: (x + y) << n = ((x << n) + (y << n))%uint63.
Proof.
apply to_Z_inj; rewrite -> !lsl_spec, !add_spec, Zmult_mod_idemp_l.
rewrite -> !lsl_spec, <-Zplus_mod.
apply (f_equal2 Z.modulo); auto with zarith.
Qed.
Lemma lsr_M_r x i (H: (digits <=? i = true)%uint63) : x >> i = 0%uint63.
Proof.
apply to_Z_inj.
rewrite lsr_spec, to_Z_0.
case (to_Z_bounded x); intros H1x H2x.
case (to_Z_bounded digits); intros H1d H2d.
rewrite -> leb_spec in H.
apply Zdiv_small; split; [ auto | ].
apply (Z.lt_le_trans _ _ _ H2x).
unfold wB; change (Z_of_nat size) with φ digits.
apply Zpower_le_monotone; auto with zarith.
Qed.
(* BIT *)
Lemma bit_0_spec i: φ (bit i 0) = φ i mod 2.
Proof.
unfold bit, is_zero.
rewrite lsr_0_r.
assert (Hbi: (φ i mod 2 < 2)%Z).
{
apply Z_mod_lt; auto with zarith.
}
case (to_Z_bounded i); intros H1i H2i.
case (Z.mod_bound_pos_le (φ i) 2); auto with zarith; intros H3i H4i.
assert (H2b: (0 < 2 ^ φ (digits - 1))%Z).
{
apply Zpower_gt_0; auto with zarith.
case (to_Z_bounded (digits -1)); auto with zarith.
}
assert (H: φ (i << (digits -1)) = (φ i mod 2 * 2^ φ (digits -1))%Z).
{
rewrite lsl_spec.
rewrite -> (Z_div_mod_eq_full φ i 2) at 1.
rewrite -> Zmult_plus_distr_l, <-Zplus_mod_idemp_l.
rewrite -> (Zmult_comm 2), <-Zmult_assoc.
replace (2 * 2 ^ φ (digits - 1))%Z with wB; auto.
rewrite Z_mod_mult, Zplus_0_l; apply Zmod_small.
split; auto with zarith.
replace wB with (2 * 2 ^ φ (digits -1))%Z; auto.
apply Zmult_lt_compat_r; auto with zarith.
}
case (Zle_lt_or_eq 0 (φ i mod 2)); auto with zarith; intros Hi.
2: generalize H; rewrite <-Hi, Zmult_0_l.
2: replace 0%Z with φ 0; auto.
2: now case eqbP.
generalize H; replace (φ i mod 2) with 1%Z; auto with zarith.
rewrite Zmult_1_l.
intros H1.
assert (H2: φ (i << (digits - 1)) <> φ 0).
{
replace φ 0 with 0%Z; auto with zarith.
}
now case eqbP.
Qed.
Lemma bit_split i : ( i = (i >> 1 ) << 1 + bit i 0)%uint63.
Proof.
apply to_Z_inj.
rewrite -> add_spec, lsl_spec, lsr_spec, bit_0_spec, Zplus_mod_idemp_l.
replace (2 ^ φ 1) with 2%Z; auto with zarith.
rewrite -> Zmult_comm, <-Z_div_mod_eq_full.
rewrite Zmod_small; auto; case (to_Z_bounded i); auto.
Qed.
Lemma bit_lsr x i j : (bit (x >> i) j = if j <=? i + j then bit x (i + j) else false)%uint63.
Proof.
unfold bit; rewrite lsr_add; case (_ ≤? _); auto.
Qed.
Lemma bit_b2i (b: bool) i : bit b i = (i =? 0)%uint63 && b.
Proof.
case b; unfold bit; simpl b2i.
-
rewrite lsr_1; case (i =? 0)%uint63; auto.
-
rewrite lsr0, lsl0, andb_false_r; auto.
Qed.
Lemma bit_1 n : bit 1 n = (n =? 0)%uint63.
Proof.
unfold bit; rewrite lsr_1.
case (_ =? _)%uint63; simpl; auto.
Qed.
Local Hint Resolve Z.lt_gt Z.div_pos : zarith.
Lemma to_Z_split x : φ x = φ (x >> 1) * 2 + φ (bit x 0).
Proof.
case (to_Z_bounded x); intros H1x H2x.
case (to_Z_bounded (bit x 0)); intros H1b H2b.
assert (F1: 0 <= φ (x >> 1) < wB/2).
{
rewrite -> lsr_spec, to_Z_1, Z.pow_1_r.
split; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
}
rewrite -> (bit_split x) at 1.
rewrite -> add_spec, Zmod_small, lsl_spec, to_Z_1, Z.pow_1_r, Zmod_small; split; auto with zarith.
-
change wB with ((wB/2)*2); auto with zarith.
-
rewrite -> lsl_spec, to_Z_1, Z.pow_1_r, Zmod_small; auto with zarith.
change wB with ((wB/2)*2); auto with zarith.
-
rewrite -> lsl_spec, to_Z_1, Z.pow_1_r, Zmod_small; auto with zarith.
2: change wB with ((wB/2)*2); auto with zarith.
change wB with (((wB/2 - 1) * 2 + 1) + 1).
assert (φ (bit x 0) <= 1); auto with zarith.
case bit; discriminate.
Qed.
Lemma bit_M i n (H: (digits <=? n = true)%uint63): bit i n = false.
Proof.
unfold bit; rewrite lsr_M_r; auto.
Qed.
Lemma bit_half i n (H: (n <? digits = true)%uint63) : bit (i>>1) n = bit i (n+1).
Proof.
unfold bit.
rewrite lsr_add.
case_eq (n <=? (1 + n))%uint63.
-
replace (1+n)%uint63 with (n+1)%uint63; [auto|idtac].
apply to_Z_inj; rewrite !add_spec, Zplus_comm; auto.
-
intros H1; assert (H2: n = max_int).
2: generalize H; rewrite H2; discriminate.
case (to_Z_bounded n); intros H1n H2n.
case (Zle_lt_or_eq φ n (wB - 1)); auto with zarith; intros H2; apply to_Z_inj; auto.
generalize (add_le_r 1 n); rewrite H1.
change φ max_int with (wB - 1)%Z.
replace φ 1 with 1%Z; auto with zarith.
Qed.
Lemma bit_ext i j : (forall n, bit i n = bit j n) -> i = j.
Proof.
case (to_Z_bounded j); case (to_Z_bounded i).
unfold wB; revert i j; elim size.
-
simpl; intros i j ???? _; apply to_Z_inj; lia.
-
intros n ih i j.
rewrite Nat2Z.inj_succ, Z.pow_succ_r by auto with zarith.
intros hi1 hi2 hj1 hj2 hext.
rewrite (bit_split i), (bit_split j), hext.
do 2 f_equal; apply ih; clear ih.
1, 3: apply to_Z_bounded.
1, 2: now rewrite lsr_spec; apply Z.div_lt_upper_bound.
intros b.
case (Zle_or_lt φ digits φ b).
+
rewrite <- leb_spec; intros; rewrite !bit_M; auto.
+
rewrite <- ltb_spec; intros; rewrite !bit_half; auto.
Qed.
Lemma bit_lsl x i j : bit (x << i) j = (if (j <? i) || (digits <=? j) then false else bit x (j - i))%uint63.
Proof.
assert (F1: 1 >= 0) by discriminate.
case_eq (digits <=? j)%uint63; intros H.
-
rewrite orb_true_r, bit_M; auto.
-
set (d := φ digits).
case (Zle_or_lt d (φ j)); intros H1.
1:case (leb_spec digits j); rewrite H; auto with zarith.
1:intros _ HH; generalize (HH H1); discriminate.
clear H.
generalize (ltb_spec j i); case ltb; intros H2; unfold bit; simpl.
+
change 62%uint63 with (digits - 1)%uint63.
assert (F2: (φ j < φ i)%Z) by (case H2; auto); clear H2.
replace (is_zero (((x << i) >> j) << (digits - 1))) with true; auto.
case (to_Z_bounded j); intros H1j H2j.
apply sym_equal; rewrite is_zero_spec; apply to_Z_inj.
rewrite lsl_spec, lsr_spec, lsl_spec.
replace wB with (2^d); auto.
pattern d at 1; replace d with ((d - (φ j + 1)) + (φ j + 1))%Z by ring.
rewrite Zpower_exp; auto with zarith.
replace φ i with ((φ i - (φ j + 1)) + (φ j + 1))%Z by ring.
rewrite -> Zpower_exp, Zmult_assoc; auto with zarith.
rewrite Zmult_mod_distr_r.
rewrite -> Zplus_comm, Zpower_exp, !Zmult_assoc; auto with zarith.
rewrite -> Z_div_mult_full; auto with zarith.
rewrite <-Zmult_assoc, <-Zpower_exp; auto with zarith.
replace (1 + φ digits - 1)%Z with d; auto with zarith.
rewrite Z_mod_mult; auto.
+
case H2; intros _ H3; case (Zle_or_lt φ i φ j); intros F2.
2: generalize (H3 F2); discriminate.
clear H2 H3.
apply (f_equal negb).
apply (f_equal is_zero).
apply to_Z_inj.
rewrite -> !lsl_spec, !lsr_spec, !lsl_spec.
pattern wB at 2 3; replace wB with (2^(1+ φ (digits - 1))); auto.
rewrite -> Zpower_exp, Z.pow_1_r; auto with zarith.
rewrite !Zmult_mod_distr_r.
apply (f_equal2 Zmult); auto.
replace wB with (2^ d); auto with zarith.
replace d with ((d - φ i) + φ i)%Z by ring.
case (to_Z_bounded i); intros H1i H2i.
rewrite Zpower_exp; auto with zarith.
rewrite Zmult_mod_distr_r.
case (to_Z_bounded j); intros H1j H2j.
replace φ (j - i) with (φ j - φ i)%Z.
2: rewrite sub_spec, Zmod_small; auto with zarith.
set (d1 := (d - φ i)%Z).
set (d2 := (φ j - φ i)%Z).
pattern φ j at 1; replace φ j with (d2 + φ i)%Z.
2: unfold d2; ring.
rewrite -> Zpower_exp; auto with zarith.
rewrite -> Zdiv_mult_cancel_r.
2: generalize (Zpower2_lt_lin φ i H1i); auto with zarith.
rewrite -> (Z_div_mod_eq_full φ x (2^d1)) at 2.
pattern d1 at 2; replace d1 with (d2 + (1+ (d - φ j - 1)))%Z by (unfold d1, d2; ring).
rewrite Zpower_exp; auto with zarith.
rewrite <-Zmult_assoc, Zmult_comm.
rewrite Zdiv.Z_div_plus_full_l; auto with zarith.
rewrite Zpower_exp, Z.pow_1_r; auto with zarith.
rewrite <-Zplus_mod_idemp_l.
rewrite <-!Zmult_assoc, Zmult_comm, Z_mod_mult, Zplus_0_l; auto.
Qed.
(* LOR *)
Lemma lor_lsr i1 i2 i: (i1 lor i2) >> i = (i1 >> i) lor (i2 >> i).
Proof.
apply bit_ext; intros n.
rewrite -> lor_spec, !bit_lsr, lor_spec.
case (_ <=? _)%uint63; auto.
Qed.
Lemma lor_le x y : (y <=? x lor y)%uint63 = true.
Proof.
generalize x y (to_Z_bounded x) (to_Z_bounded y); clear x y.
unfold wB; elim size.
-
replace (2^Z_of_nat 0) with 1%Z; auto with zarith.
intros x y Hx Hy; replace x with 0%uint63.
+
replace y with 0%uint63; auto.
apply to_Z_inj; rewrite to_Z_0; auto with zarith.
+
apply to_Z_inj; rewrite to_Z_0; auto with zarith.
-
intros n IH x y; rewrite inj_S.
unfold Z.succ; rewrite -> Zpower_exp, Z.pow_1_r; auto with zarith.
intros Hx Hy.
rewrite leb_spec.
rewrite -> (to_Z_split y) at 1; rewrite (to_Z_split (x lor y)).
assert (φ (y>>1) <= φ ((x lor y) >> 1)).
+
rewrite -> lor_lsr, <-leb_spec; apply IH.
*
rewrite -> lsr_spec, to_Z_1, Z.pow_1_r; split; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
*
rewrite -> lsr_spec, to_Z_1, Z.pow_1_r; split; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
+
assert (φ (bit y 0) <= φ (bit (x lor y) 0)); auto with zarith.
rewrite lor_spec; do 2 case bit; try discriminate.
Qed.
Lemma bit_0 n : bit 0 n = false.
Proof.
unfold bit; rewrite lsr0; auto.
Qed.
Lemma bit_add_or x y: (forall n, bit x n = true -> bit y n = true -> False) <-> (x + y)%uint63= x lor y.
Proof.
generalize x y (to_Z_bounded x) (to_Z_bounded y); clear x y.
unfold wB; elim size.
-
replace (2^Z_of_nat 0) with 1%Z; auto with zarith.
intros x y Hx Hy; replace x with 0%uint63.
+
replace y with 0%uint63.
{
split; auto; intros _ n; rewrite !bit_0; discriminate.
}
apply to_Z_inj; rewrite to_Z_0; auto with zarith.
+
apply to_Z_inj; rewrite to_Z_0; auto with zarith.
-
intros n IH x y; rewrite inj_S.
unfold Z.succ; rewrite Zpower_exp, Z.pow_1_r; auto with zarith.
intros Hx Hy.
split.
+
intros Hn.
assert (F1: ((x >> 1) + (y >> 1))%uint63 = (x >> 1) lor (y >> 1)).
{
apply IH.
-
rewrite lsr_spec, Z.pow_1_r; split; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
-
rewrite lsr_spec, Z.pow_1_r; split; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
-
intros m H1 H2.
case_eq (digits <=? m)%uint63; [idtac | rewrite <- not_true_iff_false]; intros Heq.
+
rewrite bit_M in H1; auto; discriminate.
+
rewrite leb_spec in Heq.
apply (Hn (m + 1)%uint63); rewrite <-bit_half; auto; rewrite ltb_spec; auto with zarith.
}
rewrite (bit_split (x lor y)), lor_lsr, <- F1, lor_spec.
replace (b2i (bit x 0 || bit y 0)) with (bit x 0 + bit y 0)%uint63.
2: generalize (Hn 0%uint63); do 2 case bit; auto; intros [ ]; auto.
rewrite lsl_add_distr.
rewrite (bit_split x) at 1; rewrite (bit_split y) at 1.
rewrite <-!add_assoc; apply (f_equal2 add); auto.
rewrite add_comm, <-!add_assoc; apply (f_equal2 add); auto.
rewrite add_comm; auto.
+
intros Heq.
generalize (add_le_r x y); rewrite Heq, lor_le; intro Hb.
generalize Heq; rewrite (bit_split x) at 1; rewrite (bit_split y )at 1; clear Heq.
rewrite (fun y => add_comm y (bit x 0)), <-!add_assoc, add_comm, <-!add_assoc, (add_comm (bit y 0)), add_assoc, <-lsl_add_distr.
rewrite (bit_split (x lor y)), lor_spec.
intros Heq.
assert (F: (bit x 0 + bit y 0)%uint63 = (bit x 0 || bit y 0)).
{
assert (F1: (2 | wB)) by (apply Zpower_divide; apply refl_equal).
assert (F2: 0 < wB) by (apply refl_equal).
assert (F3: φ (bit x 0 + bit y 0) mod 2 = φ (bit x 0 || bit y 0) mod 2).
{
apply trans_equal with ((φ ((x>>1 + y>>1) << 1) + φ (bit x 0 + bit y 0)) mod 2).
-
rewrite lsl_spec, Zplus_mod, <-Zmod_div_mod; auto with zarith.
rewrite Z.pow_1_r, Z_mod_mult, Zplus_0_l, Zmod_mod; auto with zarith.
-
rewrite (Zmod_div_mod 2 wB), <-add_spec, Heq; auto with zarith.
rewrite add_spec, <-Zmod_div_mod; auto with zarith.
rewrite lsl_spec, Zplus_mod, <-Zmod_div_mod; auto with zarith.
rewrite Z.pow_1_r, Z_mod_mult, Zplus_0_l, Zmod_mod; auto with zarith.
}
generalize F3; do 2 case bit; try discriminate; auto.
}
case (IH (x >> 1) (y >> 1)).
*
rewrite lsr_spec, to_Z_1, Z.pow_1_r; split; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
*
rewrite lsr_spec, to_Z_1, Z.pow_1_r; split; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
*
intros _ HH m; case (to_Z_bounded m); intros H1m H2m.
case_eq (digits <=? m)%uint63.
--
intros Hlm; rewrite bit_M; auto; discriminate.
--
rewrite <- not_true_iff_false, leb_spec; intros Hlm.
case (Zle_lt_or_eq 0 φ m); auto; intros Hm.
++
replace m with ((m -1) + 1)%uint63.
{
rewrite <-(bit_half x), <-(bit_half y); auto with zarith.
-
apply HH.
rewrite <-lor_lsr.
assert (0 <= φ (bit (x lor y) 0) <= 1) by (case bit; split; discriminate).
rewrite F in Heq; generalize (add_cancel_r _ _ _ Heq).
intros Heq1; apply to_Z_inj.
generalize (f_equal to_Z Heq1); rewrite lsl_spec, to_Z_1, Z.pow_1_r, Zmod_small.
+
rewrite lsl_spec, to_Z_1, Z.pow_1_r, Zmod_small; auto with zarith.
case (to_Z_bounded (x lor y)); intros H1xy H2xy.
rewrite lsr_spec, to_Z_1, Z.pow_1_r; auto with zarith.
change wB with ((wB/2)*2); split; auto with zarith.
assert (φ (x lor y) / 2 < wB / 2); auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
+
split.
*
case (to_Z_bounded (x >> 1 + y >> 1)); auto with zarith.
*
rewrite add_spec.
apply Z.le_lt_trans with ((φ (x >> 1) + φ (y >> 1)) * 2); auto with zarith.
--
case (Z.mod_bound_pos_le (φ (x >> 1) + φ (y >> 1)) wB); auto with zarith.
case (to_Z_bounded (x >> 1)); case (to_Z_bounded (y >> 1)); auto with zarith.
--
generalize Hb; rewrite (to_Z_split x) at 1; rewrite (to_Z_split y) at 1.
case (to_Z_bounded (bit x 0)); case (to_Z_bounded (bit y 0)); auto with zarith.
-
rewrite ltb_spec, sub_spec, to_Z_1, Zmod_small; auto with zarith.
-
rewrite ltb_spec, sub_spec, to_Z_1, Zmod_small; auto with zarith.
}
apply to_Z_inj.
rewrite add_spec, sub_spec, Zplus_mod_idemp_l, to_Z_1, Zmod_small; auto with zarith.
++
pose proof (to_Z_inj 0 _ Hm); clear Hm; subst m.
intros hx hy; revert F; rewrite hx, hy; intros F.
generalize (f_equal to_Z F).
vm_compute.
lia.
Qed.
Lemma addmuldiv_spec x y p : φ p <= φ digits -> φ (addmuldiv p x y) = (φ x * (2 ^ φ p) + φ y / (2 ^ (φ digits - φ p))) mod wB.
Proof.
intros H.
assert (Fp := to_Z_bounded p); assert (Fd := to_Z_bounded digits).
rewrite addmuldiv_def_spec; unfold addmuldiv_def.
case (bit_add_or (x << p) (y >> (digits - p))); intros HH _.
rewrite <-HH, add_spec, lsl_spec, lsr_spec, Zplus_mod_idemp_l, sub_spec.
-
rewrite (fun x y => Zmod_small (x - y)); auto with zarith.
-
intros n; rewrite -> bit_lsl, bit_lsr.
generalize (add_le_r (digits - p) n).
case (_ ≤? _); try discriminate.
rewrite -> sub_spec, Zmod_small; auto with zarith; intros H1.
case_eq (n <? p)%uint63; try discriminate.
rewrite <- not_true_iff_false, ltb_spec; intros H2.
case (_ ≤? _); try discriminate.
intros _; rewrite bit_M; try discriminate.
rewrite -> leb_spec, add_spec, Zmod_small, sub_spec, Zmod_small; auto with zarith.
rewrite -> sub_spec, Zmod_small; auto with zarith.
Qed.
(* is_even *)
Lemma is_even_bit i : is_even i = negb (bit i 0).
Proof.
unfold is_even.
replace (i land 1) with (b2i (bit i 0)).
-
case bit; auto.
-
apply bit_ext; intros n.
rewrite bit_b2i, land_spec, bit_1.
generalize (eqb_spec n 0).
case (n =? 0)%uint63; auto.
+
intros(H,_); rewrite andb_true_r, H; auto.
+
rewrite andb_false_r; auto.
Qed.
Lemma is_even_spec x : if is_even x then φ x mod 2 = 0 else φ x mod 2 = 1.
Proof.
rewrite is_even_bit.
generalize (bit_0_spec x); case bit; simpl; auto.
Qed.
Lemma is_even_0 : is_even 0 = true.
Proof.
apply refl_equal.
Qed.
Lemma is_even_lsl_1 i : is_even (i << 1) = true.
Proof.
rewrite is_even_bit, bit_lsl; auto.
Qed.
(* Sqrt *) (* Direct transcription of an old proof of a fortran program in boyer-moore *)
Ltac elim_div := unfold Z.div, Z.modulo; match goal with | H : context[ Z.div_eucl ?X ?Y ] |- _ => generalize dependent H; generalize (Z_div_mod_full X Y) ; case (Z.div_eucl X Y) | |- context[ Z.div_eucl ?X ?Y ] => generalize (Z_div_mod_full X Y) ; case (Z.div_eucl X Y) end; unfold Remainder.
Lemma quotient_by_2 a: a - 1 <= (a/2) + (a/2).
Proof.
case (Z_mod_lt a 2); auto with zarith.
intros H1; rewrite Zmod_eq_full; auto with zarith.
Qed.
Lemma sqrt_main_trick j k: 0 <= j -> 0 <= k -> (j * k) + j <= ((j + k)/2 + 1) ^ 2.
Proof.
intros Hj; generalize Hj k; pattern j; apply natlike_ind; auto; clear k j Hj.
-
intros _ k Hk; repeat rewrite Zplus_0_l.
apply Zmult_le_0_compat; generalize (Z_div_pos k 2); auto with zarith.
-
intros j Hj Hrec _ k Hk; pattern k; apply natlike_ind; auto; clear k Hk.
+
rewrite -> Zmult_0_r, Zplus_0_r, Zplus_0_l.
generalize (sqr_pos (Z.succ j / 2)) (quotient_by_2 (Z.succ j)); unfold Z.succ.
rewrite Z.pow_2_r, Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
auto with zarith.
+
intros k Hk _.
replace ((Z.succ j + Z.succ k) / 2) with ((j + k)/2 + 1).
*
generalize (Hrec Hj k Hk) (quotient_by_2 (j + k)).
unfold Z.succ; repeat rewrite Z.pow_2_r; repeat rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
repeat rewrite Zmult_1_l; repeat rewrite Zmult_1_r.
auto with zarith.
*
rewrite -> Zplus_comm, <- Z_div_plus_full_l; auto with zarith.
apply f_equal2; auto with zarith.
Qed.
Lemma sqrt_main i j: 0 <= i -> 0 < j -> i < ((j + (i/j))/2 + 1) ^ 2.
Proof.
intros Hi Hj.
assert (Hij: 0 <= i/j) by (apply Z_div_pos; auto with zarith).
refine (Z.lt_le_trans _ _ _ _ (sqrt_main_trick _ _ (Zlt_le_weak _ _ Hj) Hij)).
pattern i at 1; rewrite -> (Z_div_mod_eq_full i j); case (Z_mod_lt i j); auto with zarith.
Qed.
Lemma sqrt_test_false i j: 0 <= i -> 0 < j -> i/j < j -> (j + (i/j))/2 < j.
Proof.
intros Hi Hj; elim_div; intros q r [ ? hr ]; [ lia | subst i ].
elim_div; intros a b [ h [ hb | ] ]; lia.
Qed.
Lemma sqrt_test_true i j: 0 <= i -> 0 < j -> i/j >= j -> j ^ 2 <= i.
Proof.
intros Hi Hj Hd; rewrite Z.pow_2_r.
apply Z.le_trans with (j * (i/j)); auto with zarith.
apply Z_mult_div_ge; auto with zarith.
Qed.
Lemma sqrt_step_correct rec i j: 0 < φ i -> 0 < φ j -> φ i < (φ j + 1) ^ 2 -> 2 * φ j < wB -> (forall j1 : int, 0 < φ j1 < φ j -> φ i < (φ j1 + 1) ^ 2 -> φ (rec i j1) ^ 2 <= φ i < (φ (rec i j1) + 1) ^ 2) -> φ (sqrt_step rec i j) ^ 2 <= φ i < (φ (sqrt_step rec i j) + 1) ^ 2.
Proof.
assert (Hp2: 0 < φ 2) by exact (refl_equal Lt).
intros Hi Hj Hij H31 Hrec.
unfold sqrt_step.
case ltbP; rewrite div_spec.
-
intros hlt.
assert (φ (j + i / j) = φ j + φ i/φ j) as hj.
{
rewrite add_spec, Zmod_small;rewrite div_spec; auto with zarith.
}
apply Hrec; rewrite lsr_spec, hj, to_Z_1; change (2 ^ 1) with 2.
+
split; [ | apply sqrt_test_false;auto with zarith].
replace (φ j + φ i/φ j) with (1 * 2 + ((φ j - 2) + φ i / φ j)) by ring.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= φ i/ φ j) by (apply Z_div_pos; auto with zarith).
assert (0 <= (φ j - 2 + φ i / φ j) / 2) ; auto with zarith.
apply Z.div_pos; [ | lia ].
case (Zle_lt_or_eq 1 φ j); auto with zarith; intros Hj1.
rewrite <- Hj1, Zdiv_1_r; lia.
+
apply sqrt_main;auto with zarith.
-
split;[apply sqrt_test_true | ];auto with zarith.
Qed.
Lemma iter_sqrt_correct n rec i j: 0 < φ i -> 0 < φ j -> φ i < (φ j + 1) ^ 2 -> 2 * φ j < wB -> (forall j1, 0 < φ j1 -> 2^(Z_of_nat n) + φ j1 <= φ j -> φ i < (φ j1 + 1) ^ 2 -> 2 * φ j1 < wB -> φ (rec i j1) ^ 2 <= φ i < (φ (rec i j1) + 1) ^ 2) -> φ (iter_sqrt n rec i j) ^ 2 <= φ i < (φ (iter_sqrt n rec i j) + 1) ^ 2.
Proof.
revert rec i j; elim n; unfold iter_sqrt; fold iter_sqrt; clear n.
-
intros rec i j Hi Hj Hij H31 Hrec; apply sqrt_step_correct.
1-4: lia.
intros; apply Hrec; only 2: rewrite Zpower_0_r; auto with zarith.
-
intros n Hrec rec i j Hi Hj Hij H31 HHrec.
apply sqrt_step_correct; auto.
intros j1 Hj1 Hjp1; apply Hrec; auto with zarith.
intros j2 Hj2 H2j2 Hjp2 Hj31; apply Hrec; auto with zarith.
intros j3 Hj3 Hpj3.
apply HHrec; auto.
rewrite -> inj_S, Z.pow_succ_r.
+
apply Z.le_trans with (2 ^Z_of_nat n + φ j2); auto with zarith.
+
apply Zle_0_nat.
Qed.
Lemma sqrt_init i: 1 < i -> i < (i/2 + 1) ^ 2.
Proof.
intros Hi.
assert (H1: 0 <= i - 2) by auto with zarith.
assert (H2: 1 <= (i / 2) ^ 2); auto with zarith.
{
replace i with (1* 2 + (i - 2)); auto with zarith.
rewrite Z.pow_2_r, Z_div_plus_full_l; [|auto with zarith].
generalize (sqr_pos ((i - 2)/ 2)) (Z_div_pos (i - 2) 2).
rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
auto with zarith.
}
generalize (quotient_by_2 i).
rewrite -> Z.pow_2_r in H2 |- *; repeat (rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r || rewrite Zmult_1_l || rewrite Zmult_1_r).
auto with zarith.
Qed.
Lemma sqrt_spec : forall x, φ (sqrt x) ^ 2 <= φ x < (φ (sqrt x) + 1) ^ 2.
Proof.
intros i; unfold sqrt.
rewrite compare_spec.
case Z.compare_spec; rewrite to_Z_1; intros Hi.
-
lia.
-
apply iter_sqrt_correct; auto with zarith; rewrite lsr_spec, to_Z_1; change (2^1) with 2; auto with zarith.
+
replace φ i with (1 * 2 + (φ i - 2))%Z; try ring.
assert (0 <= (φ i - 2)/2)%Z by (apply Z_div_pos; auto with zarith).
rewrite Z_div_plus_full_l; auto with zarith.
+
apply sqrt_init; auto.
+
assert (W:= Z_mult_div_ge φ i 2);assert (W':= to_Z_bounded i);auto with zarith.
+
intros j2 H1 H2; contradict H2; apply Zlt_not_le.
fold wB;assert (W:=to_Z_bounded i).
apply Z.le_lt_trans with (φ i); auto with zarith.
assert (0 <= φ i/2)%Z by (apply Z_div_pos; auto with zarith).
apply Z.le_trans with (2 * (φ i/2)); auto with zarith.
apply Z_mult_div_ge; auto with zarith.
-
case (to_Z_bounded i); repeat rewrite Z.pow_2_r; auto with zarith.
Qed.
(* sqrt2 *)
Lemma sqrt2_step_def rec ih il j: sqrt2_step rec ih il j = if (ih <? j)%uint63 then let quo := fst (diveucl_21 ih il j) in if (quo <? j)%uint63 then let m := match j +c quo with | C0 m1 => m1 >> 1 | C1 m1 => (m1 >> 1 + 1 << (digits -1))%uint63 end in rec ih il m else j else j.
Proof.
unfold sqrt2_step; case diveucl_21; intros i j';simpl.
case (j +c i);trivial.
Qed.
Lemma sqrt2_lower_bound ih il j: Φ (WW ih il) < (φ j + 1) ^ 2 -> φ ih <= φ j.
Proof.
intros H1.
case (to_Z_bounded j); intros Hbj _.
case (to_Z_bounded il); intros Hbil _.
case (to_Z_bounded ih); intros Hbih Hbih1.
assert ((φ ih < φ j + 1)%Z); auto with zarith.
apply Zlt_square_simpl; auto with zarith.
simpl zn2z_to_Z in H1.
repeat rewrite <-Z.pow_2_r.
refine (Z.le_lt_trans _ _ _ _ H1).
apply Z.le_trans with (φ ih * wB)%Z;try rewrite Z.pow_2_r; auto with zarith.
Qed.
Lemma diveucl_21_spec_aux : forall a1 a2 b, wB/2 <= φ b -> φ a1 < φ b -> let (q,r) := diveucl_21 a1 a2 b in φ a1 *wB+ φ a2 = φ q * φ b + φ r /\ 0 <= φ r < φ b.
Proof.
intros a1 a2 b H1 H2;assert (W:= diveucl_21_spec a1 a2 b).
assert (W1:= to_Z_bounded a1).
assert (W2:= to_Z_bounded a2).
assert (Wb:= to_Z_bounded b).
assert (φ b>0) as H by (auto with zarith).
generalize (Z_div_mod (φ a1*wB+φ a2) φ b H).
revert W.
destruct (diveucl_21 a1 a2 b); destruct (Z.div_eucl (φ a1*wB+φ a2) φ b).
intros (H', H''); auto; rewrite H', H''; clear H' H''.
intros (H', H''); split; [ |exact H''].
now rewrite H', Zmult_comm.
Qed.
Lemma div2_phi ih il j: (2^62 <= φ j -> φ ih < φ j -> φ (fst (diveucl_21 ih il j)) = Φ (WW ih il) / φ j)%Z.
Proof.
intros Hj Hj1.
generalize (diveucl_21_spec_aux ih il j Hj Hj1).
case diveucl_21; intros q r (Hq, Hr).
apply Zdiv_unique with φ r; auto with zarith.
simpl @fst; apply eq_trans with (1 := Hq); ring.
Qed.
Lemma sqrt2_step_correct rec ih il j: 2 ^ (Z_of_nat (size - 2)) <= φ ih -> 0 < φ j -> Φ (WW ih il) < (φ j + 1) ^ 2 -> (forall j1, 0 < φ j1 < φ j -> Φ (WW ih il) < (φ j1 + 1) ^ 2 -> φ (rec ih il j1) ^ 2 <= Φ (WW ih il) < (φ (rec ih il j1) + 1) ^ 2) -> φ (sqrt2_step rec ih il j) ^ 2 <= Φ (WW ih il) < (φ (sqrt2_step rec ih il j) + 1) ^ 2.
Proof.
assert (Hp2: (0 < φ 2)%Z) by exact (refl_equal Lt).
intros Hih Hj Hij Hrec; rewrite sqrt2_step_def.
assert (H1: (φ ih <= φ j)%Z) by (apply sqrt2_lower_bound with il; auto).
case (to_Z_bounded ih); intros Hih1 _.
case (to_Z_bounded il); intros Hil1 _.
case (to_Z_bounded j); intros _ Hj1.
assert (Hp3: (0 < Φ (WW ih il))).
{
simpl zn2z_to_Z;apply Z.lt_le_trans with (φ ih * wB)%Z; auto with zarith.
apply Zmult_lt_0_compat; auto with zarith.
}
cbv zeta.
case_eq (ih <? j)%uint63;intros Heq.
2:{
rewrite <-not_true_iff_false, ltb_spec in Heq.
split; auto.
apply sqrt_test_true; auto with zarith.
unfold zn2z_to_Z; replace φ ih with φ j; auto with zarith.
assert (0 <= φ il/φ j) by (apply Z_div_pos; auto with zarith).
rewrite Zmult_comm, Z_div_plus_full_l; unfold base; auto with zarith.
}
rewrite -> ltb_spec in Heq.
case (Zle_or_lt (2^(Z_of_nat size -1)) φ j); intros Hjj.
1: case_eq (fst (diveucl_21 ih il j) <? j)%uint63;intros Heq0.
2:{
rewrite <-not_true_iff_false, ltb_spec, (div2_phi _ _ _ Hjj Heq) in Heq0.
split; auto; apply sqrt_test_true; auto with zarith.
}
-
rewrite -> ltb_spec, (div2_phi _ _ _ Hjj Heq) in Heq0.
match goal with |- context[rec _ _ ?X] => set (u := X) end.
assert (H: φ u = (φ j + (Φ (WW ih il))/(φ j))/2).
{
unfold u; generalize (addc_spec j (fst (diveucl_21 ih il j))); case addc;unfold interp_carry;rewrite (div2_phi _ _ _ Hjj Heq);simpl zn2z_to_Z.
{
intros i H;rewrite lsr_spec, H;trivial.
}
intros i H;rewrite <- H.
case (to_Z_bounded i); intros H1i H2i.
rewrite -> add_spec, Zmod_small, lsr_spec.
{
change (1 * wB) with (φ (1 << (digits -1)) * 2)%Z.
rewrite Z_div_plus_full_l; auto with zarith.
}
change wB with (2 * (wB/2))%Z; auto.
replace φ (1 << (digits - 1)) with (wB/2); auto.
rewrite lsr_spec; auto.
replace (2^φ 1) with 2%Z; auto.
split; auto with zarith.
assert (φ i/2 < wB/2); auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
}
apply Hrec; rewrite H; clear u H.
+
assert (Hf1: 0 <= Φ (WW ih il) / φ j) by (apply Z_div_pos; auto with zarith).
case (Zle_lt_or_eq 1 (φ j)); auto with zarith; intros Hf2.
split.
*
replace (φ j + Φ (WW ih il) / φ j)%Z with (1 * 2 + ((φ j - 2) + Φ (WW ih il) / φ j)) by lia.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= (φ j - 2 + Φ (WW ih il) / φ j) / 2) ; auto with zarith.
*
apply sqrt_test_false; auto with zarith.
+
apply sqrt_main; auto with zarith.
-
contradict Hij; apply Zle_not_lt.
assert ((1 + φ j) <= 2 ^ (Z_of_nat size - 1)); auto with zarith.
apply Z.le_trans with ((2 ^ (Z_of_nat size - 1)) ^2); auto with zarith.
+
assert (0 <= 1 + φ j); auto with zarith.
apply Zmult_le_compat; auto with zarith.
+
change ((2 ^ (Z_of_nat size - 1))^2) with (2 ^ (Z_of_nat size - 2) * wB).
apply Z.le_trans with (φ ih * wB); auto with zarith.
unfold zn2z_to_Z, wB; auto with zarith.
Qed.
Lemma iter2_sqrt_correct n rec ih il j: 2^(Z_of_nat (size - 2)) <= φ ih -> 0 < φ j -> Φ (WW ih il) < (φ j + 1) ^ 2 -> (forall j1, 0 < φ j1 -> 2^(Z_of_nat n) + φ j1 <= φ j -> Φ (WW ih il) < (φ j1 + 1) ^ 2 -> φ (rec ih il j1) ^ 2 <= Φ (WW ih il) < (φ (rec ih il j1) + 1) ^ 2) -> φ (iter2_sqrt n rec ih il j) ^ 2 <= Φ (WW ih il) < (φ (iter2_sqrt n rec ih il j) + 1) ^ 2.
Proof.
revert rec ih il j; elim n; unfold iter2_sqrt; fold iter2_sqrt; clear n.
-
intros rec ih il j Hi Hj Hij Hrec; apply sqrt2_step_correct.
1-3: lia.
intros; apply Hrec; only 2: rewrite Zpower_0_r; auto with zarith.
-
intros n Hrec rec ih il j Hi Hj Hij HHrec.
apply sqrt2_step_correct; auto.
intros j1 Hj1 Hjp1; apply Hrec; auto with zarith.
intros j2 Hj2 H2j2 Hjp2; apply Hrec; auto with zarith.
intros j3 Hj3 Hpj3.
apply HHrec; auto.
rewrite -> inj_S, Z.pow_succ_r.
+
apply Z.le_trans with (2 ^Z_of_nat n + φ j2)%Z; auto with zarith.
+
apply Zle_0_nat.
Qed.
Lemma sqrt2_spec : forall x y, wB/ 4 <= φ x -> let (s,r) := sqrt2 x y in Φ (WW x y) = φ s ^ 2 + [+|r|] /\ [+|r|] <= 2 * φ s.
Proof.
intros ih il Hih; unfold sqrt2.
change Φ (WW ih il) with (Φ(WW ih il)).
assert (Hbin: forall s, s * s + 2* s + 1 = (s + 1) ^ 2) by (intros s; ring).
assert (Hb: 0 <= wB) by (red; intros HH; discriminate).
assert (Hi2: Φ(WW ih il ) < (φ max_int + 1) ^ 2).
{
apply Z.le_lt_trans with ((wB - 1) * wB + (wB - 1)); auto with zarith.
case (to_Z_bounded ih); case (to_Z_bounded il); intros H1 H2 H3 H4.
unfold zn2z_to_Z; auto with zarith.
}
case (iter2_sqrt_correct size (fun _ _ j => j) ih il max_int); auto with zarith.
-
apply refl_equal.
-
intros j1 _ HH; contradict HH.
apply Zlt_not_le.
case (to_Z_bounded j1); auto with zarith.
change (2 ^ Z_of_nat size) with (φ max_int+1)%Z; auto with zarith.
-
set (s := iter2_sqrt size (fun _ _ j : int=> j) ih il max_int).
intros Hs1 Hs2.
generalize (mulc_spec s s); case mulc.
simpl fst; simpl snd; intros ih1 il1 Hihl1.
generalize (subc_spec il il1).
case subc; intros il2 Hil2.
+
simpl interp_carry in Hil2.
case_eq (ih1 <? ih)%uint63; [idtac | rewrite <- not_true_iff_false]; rewrite ltb_spec; intros Heq.
*
unfold interp_carry; rewrite Zmult_1_l.
rewrite -> Z.pow_2_r, Hihl1, Hil2.
case (Zle_lt_or_eq (φ ih1 + 1) (φ ih)); auto with zarith.
--
intros H2; contradict Hs2; apply Zle_not_lt.
replace ((φ s + 1) ^ 2) with (Φ(WW ih1 il1) + 2 * φ s + 1).
++
unfold zn2z_to_Z.
case (to_Z_bounded il); intros Hpil _.
assert (Hl1l: φ il1 <= φ il).
**
case (to_Z_bounded il2); rewrite Hil2; auto with zarith.
**
enough (φ ih1 * wB + 2 * φ s + 1 <= φ ih * wB) by lia.
case (to_Z_bounded s); intros _ Hps.
case (to_Z_bounded ih1); intros Hpih1 _.
apply Z.le_trans with ((φ ih1 + 2) * wB).
{
lia.
}
auto with zarith.
++
unfold zn2z_to_Z; rewrite <-Hihl1, Hbin; auto.
--
intros H2; split.
++
unfold zn2z_to_Z; rewrite <- H2; ring.
++
replace (wB + (φ il - φ il1)) with (Φ(WW ih il) - (φ s * φ s)).
{
rewrite <-Hbin in Hs2; auto with zarith.
}
rewrite Hihl1; unfold zn2z_to_Z; rewrite <- H2; ring.
*
unfold interp_carry.
case (Zle_lt_or_eq φ ih φ ih1); auto with zarith; intros H.
--
contradict Hs1.
apply Zlt_not_le; rewrite Z.pow_2_r, Hihl1.
unfold zn2z_to_Z.
case (to_Z_bounded il); intros _ H2.
apply Z.lt_le_trans with ((φ ih + 1) * wB + 0).
++
rewrite Zmult_plus_distr_l, Zplus_0_r; auto with zarith.
++
case (to_Z_bounded il1); intros H3 _.
apply Zplus_le_compat; auto with zarith.
--
split.
++
rewrite Z.pow_2_r, Hihl1.
unfold zn2z_to_Z; ring[Hil2 H].
++
replace φ il2 with (Φ(WW ih il) - Φ(WW ih1 il1)).
{
unfold zn2z_to_Z at 2; rewrite <-Hihl1.
rewrite <-Hbin in Hs2; auto with zarith.
}
unfold zn2z_to_Z; rewrite H, Hil2; ring.
+
unfold interp_carry in Hil2 |- *.
assert (Hsih: φ (ih - 1) = φ ih - 1).
{
rewrite sub_spec, Zmod_small; auto; replace φ 1 with 1; auto.
case (to_Z_bounded ih); intros H1 H2.
split; auto with zarith.
apply Z.le_trans with (wB/4 - 1); auto with zarith.
}
case_eq (ih1 <? ih - 1)%uint63; [idtac | rewrite <- not_true_iff_false]; rewrite ltb_spec, Hsih; intros Heq.
*
rewrite Z.pow_2_r, Hihl1.
case (Zle_lt_or_eq (φ ih1 + 2) φ ih); auto with zarith.
--
intros H2; contradict Hs2; apply Zle_not_lt.
replace ((φ s + 1) ^ 2) with (Φ(WW ih1 il1) + 2 * φ s + 1).
++
unfold zn2z_to_Z.
assert (φ ih1 * wB + 2 * φ s + 1 <= φ ih * wB + (φ il - φ il1)); auto with zarith.
rewrite <-Hil2.
case (to_Z_bounded il2); intros Hpil2 _.
apply Z.le_trans with (φ ih * wB + - wB); auto with zarith.
case (to_Z_bounded s); intros _ Hps.
assert (2 * φ s + 1 <= 2 * wB); auto with zarith.
apply Z.le_trans with (φ ih1 * wB + 2 * wB); auto with zarith.
assert (Hi: (φ ih1 + 3) * wB <= φ ih * wB) by auto with zarith.
lia.
++
unfold zn2z_to_Z; rewrite <-Hihl1, Hbin; auto.
--
intros H2; unfold zn2z_to_Z; rewrite <-H2.
split.
++
replace φ il with ((φ il - φ il1) + φ il1) by ring.
rewrite <-Hil2; ring.
++
replace (1 * wB + φ il2) with (Φ(WW ih il) - Φ(WW ih1 il1)).
{
unfold zn2z_to_Z at 2; rewrite <-Hihl1.
rewrite <-Hbin in Hs2; auto with zarith.
}
unfold zn2z_to_Z; rewrite <-H2.
replace φ il with ((φ il - φ il1) + φ il1); try ring.
rewrite <-Hil2; ring.
*
case (Zle_lt_or_eq (φ ih - 1) (φ ih1)); auto with zarith; intros H1.
--
assert (He: φ ih = φ ih1).
{
apply Zle_antisym; auto with zarith.
case (Zle_or_lt φ ih1 φ ih); auto; intros H2.
contradict Hs1; apply Zlt_not_le; rewrite Z.pow_2_r, Hihl1.
unfold zn2z_to_Z.
case (to_Z_bounded il); intros _ Hpil1.
apply Z.lt_le_trans with ((φ ih + 1) * wB).
-
rewrite Zmult_plus_distr_l, Zmult_1_l; auto with zarith.
-
case (to_Z_bounded il1); intros Hpil2 _.
apply Z.le_trans with ((φ ih1) * wB); auto with zarith.
}
contradict Hs1; apply Zlt_not_le; rewrite Z.pow_2_r, Hihl1.
unfold zn2z_to_Z; rewrite He.
assert (φ il - φ il1 < 0); auto with zarith.
rewrite <-Hil2.
case (to_Z_bounded il2); auto with zarith.
--
split.
++
rewrite Z.pow_2_r, Hihl1.
unfold zn2z_to_Z; rewrite <-H1.
apply trans_equal with (φ ih * wB + φ il1 + (φ il - φ il1)).
**
ring.
**
rewrite <-Hil2; ring.
++
replace φ il2 with (Φ(WW ih il) - Φ(WW ih1 il1)).
**
unfold zn2z_to_Z at 2; rewrite <- Hihl1.
rewrite <-Hbin in Hs2; auto with zarith.
**
unfold zn2z_to_Z.
rewrite <-H1.
ring_simplify.
apply trans_equal with (wB + (φ il - φ il1)).
1:ring.
rewrite <-Hil2; ring.
Qed.
(* of_pos *)
Lemma of_pos_rec_spec (k: nat) : (k <= size)%nat → ∀ p, φ(of_pos_rec k p) = Zpos p mod 2 ^ Z.of_nat k.
Proof.
elim k; clear k.
{
intros _ [p|p| ]; simpl; rewrite to_Z_0, Zmod_1_r; reflexivity.
}
intros n ih hn.
assert (n <= size)%nat as hn' by lia.
specialize (ih hn').
intros [ p | p | ].
3: {
rewrite Zmod_small.
-
reflexivity.
-
split.
+
lia.
+
apply Zpower_gt_1; lia.
}
-
simpl.
destruct (bit_add_or (of_pos_rec n p << 1) 1) as (H1, _).
rewrite <- H1;clear H1.
2: {
intros i; rewrite bit_lsl, bit_1.
case eqbP.
+
intros h; apply to_Z_inj in h; subst.
exact (λ e _, diff_false_true e).
+
exact (λ _ _, diff_false_true).
}
rewrite add_spec, lsl_spec, ih, to_Z_1; clear ih.
rewrite Z.pow_pos_fold, Zpos_P_of_succ_nat.
change (Zpos p~1) with (2 ^ 1 * Zpos p + 1)%Z.
rewrite Zmod_distr by lia.
rewrite Zpower_Zsucc by auto with zarith.
rewrite Zplus_mod_idemp_l.
rewrite Zmod_small.
{
rewrite Zmult_mod_distr_l; lia.
}
set (a := Z.of_nat n).
set (b := Zpos p).
change (2 ^ 1) with 2.
pose proof (pow2_pos a (Nat2Z.is_nonneg _)).
elim_div; intros x y [ ? ha].
{
lia.
}
destruct ha as [ ha | ].
2: lia.
split.
{
lia.
}
apply Z.lt_le_trans with (2 ^ (a + 1)).
2: apply Z.pow_le_mono_r; subst a; lia.
fold (Z.succ a); rewrite Z.pow_succ_r.
{
lia.
}
subst a; lia.
-
simpl.
rewrite lsl_spec, ih, to_Z_1, Zmod_small.
+
rewrite Z.pow_pos_fold, Zpos_P_of_succ_nat, Zpower_Zsucc by lia.
change (Zpos p~0) with (2 ^ 1 * Zpos p)%Z.
rewrite Z.mul_mod_distr_l; auto with zarith.
+
set (a := Z.of_nat n).
set (b := Zpos p).
change (2 ^ 1) with 2.
pose proof (pow2_pos a (Nat2Z.is_nonneg _)).
elim_div; intros x y [ ? ha].
{
lia.
}
destruct ha as [ ha | ].
2: lia.
split.
{
lia.
}
apply Z.lt_le_trans with (2 ^ (a + 1)).
2: apply Z.pow_le_mono_r; subst a; lia.
fold (Z.succ a); rewrite Z.pow_succ_r.
{
lia.
}
subst a; lia.
Qed.
Lemma is_int n : 0 <= n < 2 ^ φ digits → n = φ (of_Z n).
Proof.
destruct n;[reflexivity | | lia ].
intros [_ h].
simpl.
unfold of_pos.
rewrite of_pos_rec_spec by lia.
symmetry; apply Z.mod_small.
split.
-
lia.
-
exact h.
Qed.
Lemma of_Z_spec n : φ (of_Z n) = n mod wB.
Proof.
destruct n.
-
reflexivity.
-
now simpl; unfold of_pos; rewrite of_pos_rec_spec by lia.
-
simpl; unfold of_pos; rewrite opp_spec.
rewrite of_pos_rec_spec; [ |auto]; fold wB.
now rewrite <-(Z.sub_0_l), Zminus_mod_idemp_r.
Qed.
(* General lemmas *)
Lemma Z_oddE a : Z.odd a = (a mod 2 =? 1)%Z.
Proof.
rewrite Zmod_odd; case Z.odd; reflexivity.
Qed.
Lemma Z_evenE a : Z.even a = (a mod 2 =? 0)%Z.
Proof.
rewrite Zmod_even; case Z.even; reflexivity.
Qed.
(* is_zero *)
Lemma is_zeroE n : is_zero n = Z.eqb (φ n) 0.
Proof.
case Z.eqb_spec.
-
intros h; apply (to_Z_inj n 0) in h; subst n; reflexivity.
-
generalize (proj1 (is_zero_spec n)).
case is_zero; auto; intros ->; auto; destruct 1; reflexivity.
Qed.
(* bit *)
Lemma bitE i j : bit i j = Z.testbit φ(i) φ(j).
Proof.
symmetry; apply negb_sym; rewrite is_zeroE, lsl_spec, lsr_spec.
generalize (φ i) (to_Z_bounded i) (φ j) (to_Z_bounded j); clear i j; intros i [hi hi'] j [hj hj'].
rewrite Z.testbit_eqb by auto; rewrite <- Z_oddE, Z.negb_odd, Z_evenE.
remember (i / 2 ^ j) as k.
change wB with (2 * 2 ^ φ (digits - 1)).
unfold Z.modulo at 2.
generalize (Z_div_mod_full k 2 (λ k, let 'eq_refl := k in I)); unfold Remainder.
destruct Z.div_eucl as [ p q ]; intros [hk [ hq | ]].
2: lia.
rewrite hk.
remember φ (digits - 1) as m.
replace ((_ + _) * _) with (q * 2 ^ m + p * (2 * 2 ^ m)) by ring.
rewrite Z_mod_plus by (subst m; reflexivity).
assert (q = 0 ∨ q = 1) as D by lia.
destruct D; subst; reflexivity.
Qed.
(* land, lor, lxor *)
Lemma lt_pow_lt_log d k n : 0 < d <= n → 0 <= k < 2 ^ d → Z.log2 k < n.
Proof.
intros [hd hdn] [hk hkd].
assert (k = 0 ∨ 0 < k) as D by lia.
clear hk; destruct D as [ hk | hk ].
-
subst k; simpl; lia.
-
apply Z.log2_lt_pow2.
+
lia.
+
eapply Z.lt_le_trans.
*
eassumption.
*
apply Z.pow_le_mono_r; lia.
Qed.
Lemma land_spec' x y : φ (x land y) = Z.land φ(x) φ(y).
Proof.
apply Z.bits_inj'; intros n hn.
destruct (to_Z_bounded (x land y)) as [ hxy hxy' ].
destruct (to_Z_bounded x) as [ hx hx' ].
destruct (to_Z_bounded y) as [ hy hy' ].
case (Z_lt_le_dec n (φ digits)); intros hd.
2: {
rewrite !Z.bits_above_log2; auto.
-
apply Z.land_nonneg; auto.
-
eapply Z.le_lt_trans.
{
apply Z.log2_land; assumption.
}
apply Z.min_lt_iff.
left.
apply (lt_pow_lt_log φ digits).
+
exact (conj eq_refl hd).
+
split; assumption.
-
apply (lt_pow_lt_log φ digits).
+
exact (conj eq_refl hd).
+
split; assumption.
}
rewrite (is_int n).
{
rewrite Z.land_spec, <- !bitE, land_spec; reflexivity.
}
apply (conj hn).
apply (Z.lt_trans _ _ _ hd).
apply Zpower2_lt_lin.
lia.
Qed.
Lemma lor_spec' x y : φ (x lor y) = Z.lor φ(x) φ(y).
Proof.
apply Z.bits_inj'; intros n hn.
destruct (to_Z_bounded (x lor y)) as [ hxy hxy' ].
destruct (to_Z_bounded x) as [ hx hx' ].
destruct (to_Z_bounded y) as [ hy hy' ].
case (Z_lt_le_dec n (φ digits)); intros hd.
2: {
rewrite !Z.bits_above_log2; auto.
-
apply Z.lor_nonneg; auto.
-
rewrite Z.log2_lor by assumption.
apply Z.max_lub_lt; apply (lt_pow_lt_log φ digits); split; assumption || reflexivity.
-
apply (lt_pow_lt_log φ digits); split; assumption || reflexivity.
}
rewrite (is_int n).
{
rewrite Z.lor_spec, <- !bitE, lor_spec; reflexivity.
}
apply (conj hn).
apply (Z.lt_trans _ _ _ hd).
apply Zpower2_lt_lin.
lia.
Qed.
Lemma lxor_spec' x y : φ (x lxor y) = Z.lxor φ(x) φ(y).
Proof.
apply Z.bits_inj'; intros n hn.
destruct (to_Z_bounded (x lxor y)) as [ hxy hxy' ].
destruct (to_Z_bounded x) as [ hx hx' ].
destruct (to_Z_bounded y) as [ hy hy' ].
case (Z_lt_le_dec n (φ digits)); intros hd.
2: {
rewrite !Z.bits_above_log2; auto.
-
apply Z.lxor_nonneg; split; auto.
-
eapply Z.le_lt_trans.
{
apply Z.log2_lxor; assumption.
}
apply Z.max_lub_lt; apply (lt_pow_lt_log φ digits); split; assumption || reflexivity.
-
apply (lt_pow_lt_log φ digits); split; assumption || reflexivity.
}
rewrite (is_int n).
{
rewrite Z.lxor_spec, <- !bitE, lxor_spec; reflexivity.
}
apply (conj hn).
apply (Z.lt_trans _ _ _ hd).
apply Zpower2_lt_lin.
lia.
Qed.
Lemma landC i j : i land j = j land i.
Proof.
apply bit_ext; intros n.
rewrite !land_spec, andb_comm; auto.
Qed.
Lemma landA i j k : i land (j land k) = i land j land k.
Proof.
apply bit_ext; intros n.
rewrite !land_spec, andb_assoc; auto.
Qed.
Lemma land0 i : 0 land i = 0%uint63.
Proof.
apply bit_ext; intros n.
rewrite land_spec, bit_0; auto.
Qed.
Lemma land0_r i : i land 0 = 0%uint63.
Proof.
rewrite landC; exact (land0 i).
Qed.
Lemma lorC i j : i lor j = j lor i.
Proof.
apply bit_ext; intros n.
rewrite !lor_spec, orb_comm; auto.
Qed.
Lemma lorA i j k : i lor (j lor k) = i lor j lor k.
Proof.
apply bit_ext; intros n.
rewrite !lor_spec, orb_assoc; auto.
Qed.
Lemma lor0 i : 0 lor i = i.
Proof.
apply bit_ext; intros n.
rewrite lor_spec, bit_0; auto.
Qed.
Lemma lor0_r i : i lor 0 = i.
Proof.
rewrite lorC; exact (lor0 i).
Qed.
Lemma lxorC i j : i lxor j = j lxor i.
Proof.
apply bit_ext; intros n.
rewrite !lxor_spec, xorb_comm; auto.
Qed.
Lemma lxorA i j k : i lxor (j lxor k) = i lxor j lxor k.
Proof.
apply bit_ext; intros n.
rewrite !lxor_spec, xorb_assoc; auto.
Qed.
Lemma lxor0 i : 0 lxor i = i.
Proof.
apply bit_ext; intros n.
rewrite lxor_spec, bit_0, xorb_false_l; auto.
Qed.
Lemma lxor0_r i : i lxor 0 = i.
Proof.
rewrite lxorC; exact (lxor0 i).
Qed.
Lemma opp_to_Z_opp (x : int) : φ x mod wB <> 0 -> (- φ (- x)) mod wB = (φ x) mod wB.
Proof.
intros neqx0.
rewrite opp_spec.
rewrite (Z_mod_nz_opp_full (φ x%uint63)) by assumption.
rewrite (Z.mod_small (φ x%uint63)) by apply to_Z_bounded.
rewrite <- Z.add_opp_l.
rewrite Z.opp_add_distr, Z.opp_involutive.
replace (- wB) with (-1 * wB) by easy.
rewrite Z_mod_plus by easy.
now rewrite Z.mod_small by apply to_Z_bounded.
Qed.
Module Export Uint63Notations.
Local Open Scope uint63_scope.
Export Uint63NotationsInternalB.
Export Uint63NotationsInternalC.
Export Uint63NotationsInternalD.
End Uint63Notations.