Timings for Cyclic63.v

  1. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/Cyclic/Int63/Cyclic63.timing
  2. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/Cyclic/Int63/Cyclic63.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** * Uint63 numbers defines indeed a cyclic structure : Z/(2^63)Z *) (** Author: Arnaud Spiwack (+ Pierre Letouzey) *)
Require Import CyclicAxioms.
Require Export ZArith.
Require Export Uint63.
Import Zpow_facts.
Import Utf8.
Import Lia.
Local Open Scope uint63_scope.
(** {2 Operators } **)
Definition Pdigits := Eval compute in P_of_succ_nat (size - 1).
Fixpoint positive_to_int_rec (n:nat) (p:positive) := match n, p with | O, _ => (Npos p, 0) | S n, xH => (0%N, 1) | S n, xO p => let (N,i) := positive_to_int_rec n p in (N, i << 1) | S n, xI p => let (N,i) := positive_to_int_rec n p in (N, (i << 1) + 1) end.
Definition positive_to_int := positive_to_int_rec size.
Definition mulc_WW x y := let (h, l) := mulc x y in if is_zero h then if is_zero l then W0 else WW h l else WW h l.
Notation "n '*c' m" := (mulc_WW n m) (at level 40, no associativity) : uint63_scope.
Definition pos_mod p x := if p <=? digits then let p := digits - p in (x << p) >> p else x.
Notation pos_mod_int := pos_mod.
Import ZnZ.
#[global] Instance int_ops : ZnZ.Ops int := {| digits := Pdigits; (* number of digits *) zdigits := Uint63.digits; (* number of digits *) to_Z := Uint63.to_Z; (* conversion to Z *) of_pos := positive_to_int; (* positive -> N*int63 : p => N,i where p = N*2^31+phi i *) head0 := Uint63.head0; (* number of head 0 *) tail0 := Uint63.tail0; (* number of tail 0 *) zero := 0; one := 1; minus_one := Uint63.max_int; compare := Uint63.compare; eq0 := Uint63.is_zero; opp_c := Uint63.oppc; opp := Uint63.opp; opp_carry := Uint63.oppcarry; succ_c := Uint63.succc; add_c := Uint63.addc; add_carry_c := Uint63.addcarryc; succ := Uint63.succ; add := Uint63.add; add_carry := Uint63.addcarry; pred_c := Uint63.predc; sub_c := Uint63.subc; sub_carry_c := Uint63.subcarryc; pred := Uint63.pred; sub := Uint63.sub; sub_carry := Uint63.subcarry; mul_c := mulc_WW; mul := Uint63.mul; square_c := fun x => mulc_WW x x; div21 := diveucl_21; div_gt := diveucl; (* this is supposed to be the special case of division a/b where a > b *) div := diveucl; modulo_gt := Uint63.mod; modulo := Uint63.mod; gcd_gt := Uint63.gcd; gcd := Uint63.gcd; add_mul_div := Uint63.addmuldiv; pos_mod := pos_mod_int; is_even := Uint63.is_even; sqrt2 := Uint63.sqrt2; sqrt := Uint63.sqrt; ZnZ.lor := Uint63.lor; ZnZ.land := Uint63.land; ZnZ.lxor := Uint63.lxor |}.
Local Open Scope Z_scope.
Lemma is_zero_spec_aux : forall x : int, is_zero x = true -> φ x = 0%Z.
Proof.
intros x;rewrite is_zero_spec;intros H;rewrite H;trivial.
Qed.
Lemma positive_to_int_spec : forall p : positive, Zpos p = Z_of_N (fst (positive_to_int p)) * wB + to_Z (snd (positive_to_int p)).
Proof.
assert (H: (wB <= wB) -> forall p : positive, Zpos p = Z_of_N (fst (positive_to_int p)) * wB + φ (snd (positive_to_int p)) /\ φ (snd (positive_to_int p)) < wB).
2: intros p; case (H (Z.le_refl wB) p); auto.
unfold positive_to_int, wB at 1 3 4.
elim size.
-
intros _ p; simpl; rewrite to_Z_0, Pmult_1_r; split; auto with zarith; apply refl_equal.
-
intros n; rewrite inj_S; unfold Z.succ; rewrite Zpower_exp, Z.pow_1_r; auto with zarith.
intros IH Hle p.
assert (F1: 2 ^ Z_of_nat n <= wB); auto with zarith.
assert (0 <= 2 ^ Z_of_nat n); auto with zarith.
case p; simpl.
+
intros p1.
generalize (IH F1 p1); case positive_to_int_rec; simpl.
intros n1 i (H1,H2).
rewrite Zpos_xI, H1.
replace (φ (i << 1 + 1)) with (φ i * 2 + 1).
*
split; auto with zarith; ring.
*
rewrite add_spec, lsl_spec, Zplus_mod_idemp_l, to_Z_1, Z.pow_1_r, Zmod_small; auto.
case (to_Z_bounded i); split; auto with zarith.
+
intros p1.
generalize (IH F1 p1); case positive_to_int_rec; simpl.
intros n1 i (H1,H2).
rewrite Zpos_xO, H1.
replace (φ (i << 1)) with (φ i * 2).
*
split; auto with zarith; ring.
*
rewrite lsl_spec, to_Z_1, Z.pow_1_r, Zmod_small; auto.
case (to_Z_bounded i); split; auto with zarith.
+
rewrite to_Z_1; assert (0 < 2^ Z_of_nat n); auto with zarith.
Qed.
Lemma mulc_WW_spec : forall x y, Φ ( x *c y ) = φ x * φ y.
Proof.
intros x y;unfold mulc_WW.
generalize (mulc_spec x y);destruct (mulc x y);simpl;intros Heq;rewrite Heq.
case_eq (is_zero i);intros;trivial.
apply is_zero_spec in H;rewrite H, to_Z_0.
case_eq (is_zero i0);intros;trivial.
apply is_zero_spec in H0;rewrite H0, to_Z_0, Zmult_comm;trivial.
Qed.
Lemma squarec_spec : forall x, Φ(x *c x) = φ x * φ x.
Proof (fun x => mulc_WW_spec x x).
Lemma diveucl_spec_aux : forall a b, 0 < φ b -> let (q,r) := diveucl a b in φ a = φ q * φ b + φ r /\ 0 <= φ r < φ b.
Proof.
intros a b H;assert (W:= diveucl_spec a b).
assert (φ b>0) by (auto with zarith).
generalize (Z_div_mod φ a φ b H0).
destruct (diveucl a b);destruct (Z.div_eucl φ a φ b).
inversion W;rewrite Zmult_comm;trivial.
Qed.
Lemma shift_unshift_mod_2 : forall n p a, 0 <= p <= n -> ((a * 2 ^ (n - p)) mod (2^n) / 2 ^ (n - p)) mod (2^n) = a mod 2 ^ p.
Proof.
intros n p a H.
rewrite Zmod_small.
-
rewrite Zmod_eq by auto with zarith.
unfold Zminus at 1.
rewrite Zdiv.Z_div_plus_full_l by auto with zarith.
replace (2 ^ n) with (2 ^ (n - p) * 2 ^ p) by (rewrite <- Zpower_exp; [ f_equal | | ]; lia).
rewrite <- Zdiv_Zdiv, Z_div_mult by auto with zarith.
rewrite (Zmult_comm (2^(n-p))), Zmult_assoc.
rewrite Zopp_mult_distr_l.
rewrite Z_div_mult by auto with zarith.
symmetry; apply Zmod_eq; auto with zarith.
-
remember (a * 2 ^ (n - p)) as b.
destruct (Z_mod_lt b (2^n)); auto with zarith.
split.
+
apply Z_div_pos; auto with zarith.
+
apply Zdiv_lt_upper_bound; auto with zarith.
apply Z.lt_le_trans with (2^n); auto with zarith.
generalize (pow2_pos (n - p)); nia.
Qed.
Lemma div_le_0 : forall p x, 0 <= x -> 0 <= x / 2 ^ p.
Proof.
intros p x Hle;destruct (Z_le_gt_dec 0 p).
-
apply Zdiv_le_lower_bound;auto with zarith.
-
replace (2^p) with 0.
+
destruct x;compute;intro;discriminate.
+
destruct p;trivial;discriminate.
Qed.
Lemma div_lt : forall p x y, 0 <= x < y -> x / 2^p < y.
Proof.
intros p x y H;destruct (Z_le_gt_dec 0 p).
-
apply Zdiv_lt_upper_bound;auto with zarith.
apply Z.lt_le_trans with y;auto with zarith.
rewrite <- (Zmult_1_r y);apply Zmult_le_compat;auto with zarith.
-
replace (2^p) with 0.
+
destruct x;change (0<y);auto with zarith.
+
destruct p;trivial;discriminate.
Qed.
Lemma P (A B C: Prop) : A → (B → C) → (A → B) → C.
Proof.
tauto.
Qed.
Lemma shift_unshift_mod_3: forall n p a : Z, 0 <= p <= n -> (a * 2 ^ (n - p)) mod 2 ^ n / 2 ^ (n - p) = a mod 2 ^ p.
Proof.
intros;rewrite <- (shift_unshift_mod_2 n p a);[ | auto with zarith].
symmetry;apply Zmod_small.
generalize (a * 2 ^ (n - p));intros w.
generalize (2 ^ (n - p)) (pow2_pos (n - p)); intros x; apply P.
-
lia.
-
intros hx.
generalize (2 ^ n) (pow2_pos n); intros y; apply P.
+
lia.
+
intros hy.
elim_div.
intros q r.
apply P.
*
lia.
*
elim_div.
intros z t.
refine (P _ _ _ _ _).
--
lia.
--
intros [ ? [ ht | ] ]; [ | lia ]; subst w.
intros [ ? [ hr | ] ]; [ | lia ]; subst t.
nia.
Qed.
Lemma pos_mod_spec w p : φ(pos_mod p w) = φ(w) mod (2 ^ φ(p)).
Proof.
simpl.
unfold pos_mod_int.
assert (W:=to_Z_bounded p);assert (W':=to_Z_bounded Uint63.digits);assert (W'' := to_Z_bounded w).
case lebP; intros hle.
2: {
symmetry; apply Zmod_small.
assert (2 ^ φ Uint63.digits < 2 ^ φ p); [ apply Zpower_lt_monotone; auto with zarith | ].
change wB with (2 ^ φ Uint63.digits) in *; auto with zarith.
}
rewrite <- (shift_unshift_mod_3 φ Uint63.digits φ p φ w) by auto with zarith.
replace (φ Uint63.digits - φ p) with (φ (Uint63.digits - p)) by (rewrite sub_spec, Zmod_small; auto with zarith).
rewrite lsr_spec, lsl_spec; reflexivity.
Qed.
(** {2 Specification and proof} **)
Global Instance int_specs : ZnZ.Specs int_ops := { spec_to_Z := to_Z_bounded; spec_of_pos := positive_to_int_spec; spec_zdigits := refl_equal _; spec_more_than_1_digit:= refl_equal _; spec_0 := to_Z_0; spec_1 := to_Z_1; spec_m1 := refl_equal _; spec_compare := compare_spec; spec_eq0 := is_zero_spec_aux; spec_opp_c := oppc_spec; spec_opp := opp_spec; spec_opp_carry := oppcarry_spec; spec_succ_c := succc_spec; spec_add_c := addc_spec; spec_add_carry_c := addcarryc_spec; spec_succ := succ_spec; spec_add := add_spec; spec_add_carry := addcarry_spec; spec_pred_c := predc_spec; spec_sub_c := subc_spec; spec_sub_carry_c := subcarryc_spec; spec_pred := pred_spec; spec_sub := sub_spec; spec_sub_carry := subcarry_spec; spec_mul_c := mulc_WW_spec; spec_mul := mul_spec; spec_square_c := squarec_spec; spec_div21 := diveucl_21_spec_aux; spec_div_gt := fun a b _ => diveucl_spec_aux a b; spec_div := diveucl_spec_aux; spec_modulo_gt := fun a b _ _ => mod_spec a b; spec_modulo := fun a b _ => mod_spec a b; spec_gcd_gt := fun a b _ => gcd_spec a b; spec_gcd := gcd_spec; spec_head00 := head00_spec; spec_head0 := head0_spec; spec_tail00 := tail00_spec; spec_tail0 := tail0_spec; spec_add_mul_div := addmuldiv_spec; spec_pos_mod := pos_mod_spec; spec_is_even := is_even_spec; spec_sqrt2 := sqrt2_spec; spec_sqrt := sqrt_spec; spec_land := land_spec'; spec_lor := lor_spec'; spec_lxor := lxor_spec' }.
Module Uint63Cyclic <: CyclicType.
Definition t := int.
Definition ops := int_ops.
Definition specs := int_specs.
End Uint63Cyclic.