Timings for ZifySint63.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./micromega/ZifySint63.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./micromega/ZifySint63.timing
Require Import ZArith.
Require Import Sint63.
Require Import ZifyBool.
Import ZifyClasses.
Lemma to_Z_bounded (x : int) : (-4611686018427387904 <= to_Z x <= 4611686018427387903)%Z.
Proof.
now apply to_Z_bounded.
Qed.
#[global] Instance Inj_int_Z : InjTyp int Z := mkinj _ _ to_Z (fun x => -4611686018427387904 <= x <= 4611686018427387903)%Z to_Z_bounded.
Add Zify InjTyp Inj_int_Z.
#[global] Instance Op_max_int : CstOp max_int := { TCst := 4611686018427387903 ; TCstInj := eq_refl }.
Add Zify CstOp Op_max_int.
#[global] Instance Op_min_int : CstOp min_int := { TCst := -4611686018427387904 ; TCstInj := eq_refl }.
Add Zify CstOp Op_min_int.
#[global] Instance Op_digits : CstOp digits := { TCst := 63 ; TCstInj := eq_refl }.
Add Zify CstOp Op_digits.
#[global] Instance Op_size : CstOp size := { TCst := 63 ; TCstInj := eq_refl }.
Add Zify CstOp Op_size.
#[global] Instance Op_wB : CstOp wB := { TCst := 2^63 ; TCstInj := eq_refl }.
Add Zify CstOp Op_wB.
Lemma ltb_lt : forall n m, (n <? m)%sint63 = (to_Z n <? to_Z m)%Z.
Proof.
intros; apply Bool.eq_true_iff_eq.
rewrite ltb_spec, <- Z.ltb_lt.
apply iff_refl.
Qed.
#[global] Instance Op_ltb : BinOp ltb := {| TBOp := Z.ltb; TBOpInj := ltb_lt |}.
Add Zify BinOp Op_ltb.
Lemma leb_le : forall n m, (n <=? m)%sint63 = (to_Z n <=? to_Z m)%Z.
Proof.
intros; apply Bool.eq_true_iff_eq.
rewrite leb_spec, <- Z.leb_le.
apply iff_refl.
Qed.
#[global] Instance Op_leb : BinOp leb := {| TBOp := Z.leb; TBOpInj := leb_le |}.
Add Zify BinOp Op_leb.
Lemma eqb_eq : forall n m, (n =? m)%sint63 = (to_Z n =? to_Z m)%Z.
Proof.
intros; apply Bool.eq_true_iff_eq.
rewrite eqb_spec, Z.eqb_eq.
split; intro H.
-
now subst; reflexivity.
-
now apply to_Z_inj in H.
Qed.
#[global] Instance Op_eqb : BinOp eqb := {| TBOp := Z.eqb; TBOpInj := eqb_eq |}.
Add Zify BinOp Op_eqb.
Lemma eq_int_inj : forall n m : int, n = m <-> (to_Z n = to_Z m)%sint63.
Proof.
split; intro H.
-
rewrite H; reflexivity.
-
now apply to_Z_inj.
Qed.
#[global] Instance Op_eq : BinRel (@eq int) := {| TR := @eq Z; TRInj := eq_int_inj |}.
Add Zify BinRel Op_eq.
Notation cmodwB x := ((x + 4611686018427387904) mod 9223372036854775808 - 4611686018427387904)%Z.
#[global] Instance Op_add : BinOp add := {| TBOp := fun x y => cmodwB (x + y); TBOpInj := add_spec |}%Z.
Add Zify BinOp Op_add.
#[global] Instance Op_sub : BinOp sub := {| TBOp := fun x y => cmodwB (x - y); TBOpInj := sub_spec |}%Z.
Add Zify BinOp Op_sub.
#[global] Instance Op_opp : UnOp Uint63.opp := {| TUOp := fun x => cmodwB (- x); TUOpInj := (sub_spec 0) |}%Z.
Add Zify UnOp Op_opp.
#[global] Instance Op_succ : UnOp succ := {| TUOp := fun x => cmodwB (x + 1); TUOpInj := succ_spec |}%Z.
Add Zify UnOp Op_succ.
#[global] Instance Op_pred : UnOp Uint63.pred := {| TUOp := fun x => cmodwB (x - 1); TUOpInj := pred_spec |}%Z.
Add Zify UnOp Op_pred.
#[global] Instance Op_mul : BinOp mul := {| TBOp := fun x y => cmodwB (x * y); TBOpInj := mul_spec |}%Z.
Add Zify BinOp Op_mul.
#[global] Instance Op_mod : BinOp PrimInt63.mods := {| TBOp := Z.rem ; TBOpInj := mod_spec |}.
Add Zify BinOp Op_mod.
#[global] Instance Op_asr : BinOp asr := {| TBOp := fun x y => x / 2^ y ; TBOpInj := asr_spec |}%Z.
Add Zify BinOp Op_asr.
Definition quots (x d : Z) : Z := if ((x =? -4611686018427387904)%Z && (d =? -1)%Z)%bool then -4611686018427387904 else Z.quot x d.
Lemma div_quots (x y : int) : to_Z (x / y) = quots (to_Z x) (to_Z y).
Proof.
unfold quots; destruct andb eqn: eq_min_m1.
-
rewrite Bool.andb_true_iff, !Z.eqb_eq in eq_min_m1.
change (-4611686018427387904)%Z with (to_Z min_int) in eq_min_m1.
change (-1)%Z with (to_Z (-1)) in eq_min_m1.
destruct eq_min_m1 as [to_Z_x_min to_Z_y_m1].
now rewrite (to_Z_inj _ _ to_Z_x_min), (to_Z_inj _ _ to_Z_y_m1).
-
apply div_spec.
now rewrite Bool.andb_false_iff, !Z.eqb_neq in eq_min_m1.
Qed.
#[global] Instance Op_div : BinOp div := {| TBOp := quots ; TBOpInj := div_quots |}.
Add Zify BinOp Op_div.
Lemma quots_spec (x y : Z) : ((x = -4611686018427387904 /\ y = -1 /\ quots x y = -4611686018427387904) \/ ((x <> -4611686018427387904 \/ y <> -1) /\ quots x y = Z.quot x y))%Z.
Proof.
unfold quots; case andb eqn: eq_min_m1.
-
now left; rewrite Bool.andb_true_iff, !Z.eqb_eq in eq_min_m1.
-
now right; rewrite Bool.andb_false_iff, !Z.eqb_neq in eq_min_m1.
Qed.
#[global] Instance quotsSpec : BinOpSpec quots := {| BPred := fun x d r : Z => ((x = -4611686018427387904 /\ d = -1 /\ r = -4611686018427387904) \/ ((x <> -4611686018427387904 \/ d <> -1) /\ r = Z.quot x d))%Z; BSpec := quots_spec |}.
Add Zify BinOpSpec quotsSpec.
#[global] Instance Op_of_Z : UnOp of_Z := { TUOp := fun x => cmodwB x; TUOpInj := of_Z_spec }.
Add Zify UnOp Op_of_Z.
#[global] Instance Op_to_Z : UnOp to_Z := { TUOp := fun x => x ; TUOpInj := fun x : int => eq_refl }.
Add Zify UnOp Op_to_Z.
Lemma is_zeroE : forall n : int, is_zero n = (to_Z n =? 0)%Z.
Proof.
intro n; apply Bool.eq_true_iff_eq.
rewrite is_zero_spec, Z.eqb_eq; split.
-
now intro eqn0; rewrite eqn0.
-
now change 0%Z with (to_Z 0); apply to_Z_inj.
Qed.
#[global] Instance Op_is_zero : UnOp is_zero := { TUOp := (Z.eqb 0) ; TUOpInj := is_zeroE }.
Add Zify UnOp Op_is_zero.
#[global] Instance Op_abs : UnOp abs := { TUOp := fun x => cmodwB (Z.abs x) ; TUOpInj := abs_spec }.
Add Zify UnOp Op_abs.
Ltac Zify.zify_convert_to_euclidean_division_equations_flag ::= constr:(true).