Timings for FSetCompat.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./FSets/FSetCompat.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./FSets/FSetCompat.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** * Compatibility functors between FSetInterface and MSetInterface. *)
Require Import FSetInterface FSetFacts MSetInterface MSetFacts.
Set Implicit Arguments.
Unset Strict Implicit.
Local Ltac Tauto.intuition_solver ::= auto with relations.
(** * From new Weak Sets to old ones *)
Module Backport_WSets (E:DecidableType.DecidableType) (M:MSetInterface.WSets with Definition E.t := E.t with Definition E.eq := E.eq) <: FSetInterface.WSfun E.
Definition elt := E.t.
Definition t := M.t.
Implicit Type s : t.
Implicit Type x y : elt.
Implicit Type f : elt -> bool.
Definition In : elt -> t -> Prop := M.In.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
Definition empty : t := M.empty.
Definition is_empty : t -> bool := M.is_empty.
Definition mem : elt -> t -> bool := M.mem.
Definition add : elt -> t -> t := M.add.
Definition singleton : elt -> t := M.singleton.
Definition remove : elt -> t -> t := M.remove.
Definition union : t -> t -> t := M.union.
Definition inter : t -> t -> t := M.inter.
Definition diff : t -> t -> t := M.diff.
Definition eq : t -> t -> Prop := M.eq.
Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
Definition equal : t -> t -> bool := M.equal.
Definition subset : t -> t -> bool := M.subset.
Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
Definition filter : (elt -> bool) -> t -> t := M.filter.
Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
Definition cardinal : t -> nat := M.cardinal.
Definition elements : t -> list elt := M.elements.
Definition choose : t -> option elt := M.choose.
Module MF := MSetFacts.WFacts M.
Definition In_1 : forall s x y, E.eq x y -> In x s -> In y s := MF.In_1.
Definition eq_refl : forall s, eq s s := @Equivalence_Reflexive _ _ M.eq_equiv.
Definition eq_sym : forall s s', eq s s' -> eq s' s := @Equivalence_Symmetric _ _ M.eq_equiv.
Definition eq_trans : forall s s' s'', eq s s' -> eq s' s'' -> eq s s'' := @Equivalence_Transitive _ _ M.eq_equiv.
Definition mem_1 : forall s x, In x s -> mem x s = true := MF.mem_1.
Definition mem_2 : forall s x, mem x s = true -> In x s := MF.mem_2.
Definition equal_1 : forall s s', Equal s s' -> equal s s' = true := MF.equal_1.
Definition equal_2 : forall s s', equal s s' = true -> Equal s s' := MF.equal_2.
Definition subset_1 : forall s s', Subset s s' -> subset s s' = true := MF.subset_1.
Definition subset_2 : forall s s', subset s s' = true -> Subset s s' := MF.subset_2.
Definition empty_1 : Empty empty := MF.empty_1.
Definition is_empty_1 : forall s, Empty s -> is_empty s = true := MF.is_empty_1.
Definition is_empty_2 : forall s, is_empty s = true -> Empty s := MF.is_empty_2.
Definition add_1 : forall s x y, E.eq x y -> In y (add x s) := MF.add_1.
Definition add_2 : forall s x y, In y s -> In y (add x s) := MF.add_2.
Definition add_3 : forall s x y, ~ E.eq x y -> In y (add x s) -> In y s := MF.add_3.
Definition remove_1 : forall s x y, E.eq x y -> ~ In y (remove x s) := MF.remove_1.
Definition remove_2 : forall s x y, ~ E.eq x y -> In y s -> In y (remove x s) := MF.remove_2.
Definition remove_3 : forall s x y, In y (remove x s) -> In y s := MF.remove_3.
Definition union_1 : forall s s' x, In x (union s s') -> In x s \/ In x s' := MF.union_1.
Definition union_2 : forall s s' x, In x s -> In x (union s s') := MF.union_2.
Definition union_3 : forall s s' x, In x s' -> In x (union s s') := MF.union_3.
Definition inter_1 : forall s s' x, In x (inter s s') -> In x s := MF.inter_1.
Definition inter_2 : forall s s' x, In x (inter s s') -> In x s' := MF.inter_2.
Definition inter_3 : forall s s' x, In x s -> In x s' -> In x (inter s s') := MF.inter_3.
Definition diff_1 : forall s s' x, In x (diff s s') -> In x s := MF.diff_1.
Definition diff_2 : forall s s' x, In x (diff s s') -> ~ In x s' := MF.diff_2.
Definition diff_3 : forall s s' x, In x s -> ~ In x s' -> In x (diff s s') := MF.diff_3.
Definition singleton_1 : forall x y, In y (singleton x) -> E.eq x y := MF.singleton_1.
Definition singleton_2 : forall x y, E.eq x y -> In y (singleton x) := MF.singleton_2.
Definition fold_1 : forall s (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (fun a e => f e a) (elements s) i := MF.fold_1.
Definition cardinal_1 : forall s, cardinal s = length (elements s) := MF.cardinal_1.
Definition filter_1 : forall s x f, compat_bool E.eq f -> In x (filter f s) -> In x s := MF.filter_1.
Definition filter_2 : forall s x f, compat_bool E.eq f -> In x (filter f s) -> f x = true := MF.filter_2.
Definition filter_3 : forall s x f, compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s) := MF.filter_3.
Definition for_all_1 : forall s f, compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true := MF.for_all_1.
Definition for_all_2 : forall s f, compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s := MF.for_all_2.
Definition exists_1 : forall s f, compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true := MF.exists_1.
Definition exists_2 : forall s f, compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s := MF.exists_2.
Definition partition_1 : forall s f, compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s) := MF.partition_1.
Definition partition_2 : forall s f, compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s) := MF.partition_2.
Definition choose_1 : forall s x, choose s = Some x -> In x s := MF.choose_1.
Definition choose_2 : forall s, choose s = None -> Empty s := MF.choose_2.
Definition elements_1 : forall s x, In x s -> InA E.eq x (elements s) := MF.elements_1.
Definition elements_2 : forall s x, InA E.eq x (elements s) -> In x s := MF.elements_2.
Definition elements_3w : forall s, NoDupA E.eq (elements s) := MF.elements_3w.
End Backport_WSets.
(** * From new Sets to new ones *)
Module Backport_Sets (O:OrderedType.OrderedType) (M:MSetInterface.Sets with Definition E.t := O.t with Definition E.eq := O.eq with Definition E.lt := O.lt) <: FSetInterface.S with Module E:=O.
Include Backport_WSets O M.
Implicit Type s : t.
Implicit Type x y : elt.
Definition lt : t -> t -> Prop := M.lt.
Definition min_elt : t -> option elt := M.min_elt.
Definition max_elt : t -> option elt := M.max_elt.
Definition min_elt_1 : forall s x, min_elt s = Some x -> In x s := M.min_elt_spec1.
Definition min_elt_2 : forall s x y, min_elt s = Some x -> In y s -> ~ O.lt y x := M.min_elt_spec2.
Definition min_elt_3 : forall s, min_elt s = None -> Empty s := M.min_elt_spec3.
Definition max_elt_1 : forall s x, max_elt s = Some x -> In x s := M.max_elt_spec1.
Definition max_elt_2 : forall s x y, max_elt s = Some x -> In y s -> ~ O.lt x y := M.max_elt_spec2.
Definition max_elt_3 : forall s, max_elt s = None -> Empty s := M.max_elt_spec3.
Definition elements_3 : forall s, sort O.lt (elements s) := M.elements_spec2.
Definition choose_3 : forall s s' x y, choose s = Some x -> choose s' = Some y -> Equal s s' -> O.eq x y := M.choose_spec3.
Definition lt_trans : forall s s' s'', lt s s' -> lt s' s'' -> lt s s'' := @StrictOrder_Transitive _ _ M.lt_strorder.
Lemma lt_not_eq : forall s s', lt s s' -> ~ eq s s'.
Proof.
unfold lt, eq.
intros s s' Hlt Heq.
rewrite Heq in Hlt.
apply (StrictOrder_Irreflexive s'); auto.
Qed.
Definition compare : forall s s', Compare lt eq s s'.
Proof.
intros s s'; destruct (CompSpec2Type (M.compare_spec s s')); [ apply EQ | apply LT | apply GT ]; auto.
Defined.
Module E := O.
End Backport_Sets.
(** * From old Weak Sets to new ones. *)
Module Update_WSets (E:Equalities.DecidableType) (M:FSetInterface.WS with Definition E.t := E.t with Definition E.eq := E.eq) <: MSetInterface.WSetsOn E.
Definition elt := E.t.
Definition t := M.t.
Implicit Type s : t.
Implicit Type x y : elt.
Implicit Type f : elt -> bool.
Definition In : elt -> t -> Prop := M.In.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
Definition empty : t := M.empty.
Definition is_empty : t -> bool := M.is_empty.
Definition mem : elt -> t -> bool := M.mem.
Definition add : elt -> t -> t := M.add.
Definition singleton : elt -> t := M.singleton.
Definition remove : elt -> t -> t := M.remove.
Definition union : t -> t -> t := M.union.
Definition inter : t -> t -> t := M.inter.
Definition diff : t -> t -> t := M.diff.
Definition eq : t -> t -> Prop := M.eq.
Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
Definition equal : t -> t -> bool := M.equal.
Definition subset : t -> t -> bool := M.subset.
Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
Definition filter : (elt -> bool) -> t -> t := M.filter.
Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
Definition cardinal : t -> nat := M.cardinal.
Definition elements : t -> list elt := M.elements.
Definition choose : t -> option elt := M.choose.
Module MF := FSetFacts.WFacts M.
#[global] Instance In_compat : Proper (E.eq==>Logic.eq==>iff) In.
Proof.
intros x x' Hx s s' Hs.
subst.
apply MF.In_eq_iff; auto.
Qed.
#[global] Instance eq_equiv : Equivalence eq := _.
Section Spec.
Variable s s': t.
Variable x y : elt.
Lemma mem_spec : mem x s = true <-> In x s.
Proof.
intros; symmetry; apply MF.mem_iff.
Qed.
Lemma equal_spec : equal s s' = true <-> Equal s s'.
Proof.
intros; symmetry; apply MF.equal_iff.
Qed.
Lemma subset_spec : subset s s' = true <-> Subset s s'.
Proof.
intros; symmetry; apply MF.subset_iff.
Qed.
Definition empty_spec : Empty empty := M.empty_1.
Lemma is_empty_spec : is_empty s = true <-> Empty s.
Proof.
intros; symmetry; apply MF.is_empty_iff.
Qed.
Declare Equivalent Keys In M.In.
Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s.
Proof.
intros.
rewrite MF.add_iff.
intuition.
Qed.
Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x.
Proof.
intros.
rewrite MF.remove_iff.
intuition.
Qed.
Lemma singleton_spec : In y (singleton x) <-> E.eq y x.
Proof.
intros; rewrite MF.singleton_iff.
intuition.
Qed.
Definition union_spec : In x (union s s') <-> In x s \/ In x s' := @MF.union_iff s s' x.
Definition inter_spec : In x (inter s s') <-> In x s /\ In x s' := @MF.inter_iff s s' x.
Definition diff_spec : In x (diff s s') <-> In x s /\ ~In x s' := @MF.diff_iff s s' x.
Definition fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (flip f) (elements s) i := @M.fold_1 s.
Definition cardinal_spec : cardinal s = length (elements s) := @M.cardinal_1 s.
Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s.
Proof.
intros; symmetry; apply MF.elements_iff.
Qed.
Definition elements_spec2w : NoDupA E.eq (elements s) := @M.elements_3w s.
Definition choose_spec1 : choose s = Some x -> In x s := @M.choose_1 s x.
Definition choose_spec2 : choose s = None -> Empty s := @M.choose_2 s.
Definition filter_spec : forall f, Proper (E.eq==>Logic.eq) f -> (In x (filter f s) <-> In x s /\ f x = true) := @MF.filter_iff s x.
Definition partition_spec1 : forall f, Proper (E.eq==>Logic.eq) f -> Equal (fst (partition f s)) (filter f s) := @M.partition_1 s.
Definition partition_spec2 : forall f, Proper (E.eq==>Logic.eq) f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s) := @M.partition_2 s.
Lemma for_all_spec : forall f, Proper (E.eq==>Logic.eq) f -> (for_all f s = true <-> For_all (fun x => f x = true) s).
Proof.
intros; symmetry; apply MF.for_all_iff; auto.
Qed.
Lemma exists_spec : forall f, Proper (E.eq==>Logic.eq) f -> (exists_ f s = true <-> Exists (fun x => f x = true) s).
Proof.
intros; symmetry; apply MF.exists_iff; auto.
Qed.
End Spec.
End Update_WSets.
(** * From old Sets to new ones. *)
Module Update_Sets (O:Orders.OrderedType) (M:FSetInterface.S with Definition E.t := O.t with Definition E.eq := O.eq with Definition E.lt := O.lt) <: MSetInterface.Sets with Module E:=O.
Include Update_WSets O M.
Implicit Type s : t.
Implicit Type x y : elt.
Definition lt : t -> t -> Prop := M.lt.
Definition min_elt : t -> option elt := M.min_elt.
Definition max_elt : t -> option elt := M.max_elt.
Definition min_elt_spec1 : forall s x, min_elt s = Some x -> In x s := M.min_elt_1.
Definition min_elt_spec2 : forall s x y, min_elt s = Some x -> In y s -> ~ O.lt y x := M.min_elt_2.
Definition min_elt_spec3 : forall s, min_elt s = None -> Empty s := M.min_elt_3.
Definition max_elt_spec1 : forall s x, max_elt s = Some x -> In x s := M.max_elt_1.
Definition max_elt_spec2 : forall s x y, max_elt s = Some x -> In y s -> ~ O.lt x y := M.max_elt_2.
Definition max_elt_spec3 : forall s, max_elt s = None -> Empty s := M.max_elt_3.
Definition elements_spec2 : forall s, sort O.lt (elements s) := M.elements_3.
Definition choose_spec3 : forall s s' x y, choose s = Some x -> choose s' = Some y -> Equal s s' -> O.eq x y := M.choose_3.
#[global] Instance lt_strorder : StrictOrder lt.
Proof.
split.
-
intros x Hx.
apply (M.lt_not_eq Hx).
auto with crelations.
-
exact M.lt_trans.
Qed.
#[global] Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
apply proper_sym_impl_iff_2.
1-2: auto with crelations.
intros s s' Hs u u' Hu H.
assert (H0 : lt s' u).
{
destruct (M.compare s' u) as [H'|H'|H']; auto.
-
elim (M.lt_not_eq H).
transitivity s'; auto.
-
elim (M.lt_not_eq (M.lt_trans H H')); auto.
}
destruct (M.compare s' u') as [H'|H'|H']; auto.
-
elim (M.lt_not_eq H).
transitivity u'.
2: auto with crelations.
transitivity s'; auto.
-
elim (M.lt_not_eq (M.lt_trans H' H0)); auto with crelations.
Qed.
Definition compare s s' := match M.compare s s' with | EQ _ => Eq | LT _ => Lt | GT _ => Gt end.
Lemma compare_spec : forall s s', CompSpec eq lt s s' (compare s s').
Proof.
intros; unfold compare; destruct M.compare; auto.
Qed.
Module E := O.
End Update_Sets.