Timings for HexadecimalPos.v

  1. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/HexadecimalPos.timing
  2. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/HexadecimalPos.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** * HexadecimalPos Proofs that conversions between hexadecimal numbers and [positive] are bijections. *)
Require Import Hexadecimal HexadecimalFacts PArith NArith.
Module Unsigned.
Local Open Scope N.
(** A direct version of [of_little_uint] *)
Fixpoint of_lu (d:uint) : N := match d with | Nil => 0 | D0 d => 0x10 * of_lu d | D1 d => 0x1 + 0x10 * of_lu d | D2 d => 0x2 + 0x10 * of_lu d | D3 d => 0x3 + 0x10 * of_lu d | D4 d => 0x4 + 0x10 * of_lu d | D5 d => 0x5 + 0x10 * of_lu d | D6 d => 0x6 + 0x10 * of_lu d | D7 d => 0x7 + 0x10 * of_lu d | D8 d => 0x8 + 0x10 * of_lu d | D9 d => 0x9 + 0x10 * of_lu d | Da d => 0xa + 0x10 * of_lu d | Db d => 0xb + 0x10 * of_lu d | Dc d => 0xc + 0x10 * of_lu d | Dd d => 0xd + 0x10 * of_lu d | De d => 0xe + 0x10 * of_lu d | Df d => 0xf + 0x10 * of_lu d end.
Definition hd d := match d with | Nil => 0x0 | D0 _ => 0x0 | D1 _ => 0x1 | D2 _ => 0x2 | D3 _ => 0x3 | D4 _ => 0x4 | D5 _ => 0x5 | D6 _ => 0x6 | D7 _ => 0x7 | D8 _ => 0x8 | D9 _ => 0x9 | Da _ => 0xa | Db _ => 0xb | Dc _ => 0xc | Dd _ => 0xd | De _ => 0xe | Df _ => 0xf end.
Definition tl d := match d with | Nil => d | D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d | Da d | Db d | Dc d | Dd d | De d | Df d => d end.
Lemma of_lu_eqn d : of_lu d = hd d + 0x10 * (of_lu (tl d)).
Proof.
induction d; simpl; trivial.
Qed.
Ltac simpl_of_lu := match goal with | |- context [ of_lu (?f ?x) ] => rewrite (of_lu_eqn (f x)); simpl hd; simpl tl end.
Fixpoint usize (d:uint) : N := match d with | Nil => 0 | D0 d => N.succ (usize d) | D1 d => N.succ (usize d) | D2 d => N.succ (usize d) | D3 d => N.succ (usize d) | D4 d => N.succ (usize d) | D5 d => N.succ (usize d) | D6 d => N.succ (usize d) | D7 d => N.succ (usize d) | D8 d => N.succ (usize d) | D9 d => N.succ (usize d) | Da d => N.succ (usize d) | Db d => N.succ (usize d) | Dc d => N.succ (usize d) | Dd d => N.succ (usize d) | De d => N.succ (usize d) | Df d => N.succ (usize d) end.
Lemma of_lu_revapp d d' : of_lu (revapp d d') = of_lu (rev d) + of_lu d' * 0x10^usize d.
Proof.
revert d'.
induction d; simpl; intro d'; [ now rewrite N.mul_1_r | .. ]; unfold rev; simpl revapp; rewrite 2 IHd; rewrite <- N.add_assoc; f_equal; simpl_of_lu; simpl of_lu; rewrite N.pow_succ_r'; ring.
Qed.
Definition Nadd n p := match n with | N0 => p | Npos p0 => (p0+p)%positive end.
Lemma Nadd_simpl n p q : Npos (Nadd n (p * q)) = n + Npos p * Npos q.
Proof.
now destruct n.
Qed.
Lemma of_uint_acc_eqn d acc : d<>Nil -> Pos.of_hex_uint_acc d acc = Pos.of_hex_uint_acc (tl d) (Nadd (hd d) (0x10*acc)).
Proof.
destruct d; simpl; trivial.
now destruct 1.
Qed.
Lemma of_uint_acc_rev d acc : Npos (Pos.of_hex_uint_acc d acc) = of_lu (rev d) + (Npos acc) * 0x10^usize d.
Proof.
revert acc.
induction d; intros; simpl usize; [ simpl; now rewrite Pos.mul_1_r | .. ]; rewrite N.pow_succ_r'; unfold rev; simpl revapp; try rewrite of_lu_revapp; simpl of_lu; rewrite of_uint_acc_eqn by easy; simpl tl; simpl hd; rewrite IHd, Nadd_simpl; ring.
Qed.
Lemma of_uint_alt d : Pos.of_hex_uint d = of_lu (rev d).
Proof.
induction d; simpl; trivial; unfold rev; simpl revapp; rewrite of_lu_revapp; simpl of_lu; try apply of_uint_acc_rev.
rewrite IHd.
ring.
Qed.
Lemma of_lu_rev d : Pos.of_hex_uint (rev d) = of_lu d.
Proof.
rewrite of_uint_alt.
now rewrite rev_rev.
Qed.
Lemma of_lu_double_gen d : of_lu (Little.double d) = N.double (of_lu d) /\ of_lu (Little.succ_double d) = N.succ_double (of_lu d).
Proof.
rewrite N.double_spec, N.succ_double_spec.
induction d; try destruct IHd as (IH1,IH2); simpl Little.double; simpl Little.succ_double; repeat (simpl_of_lu; rewrite ?IH1, ?IH2); split; reflexivity || ring.
Qed.
Lemma of_lu_double d : of_lu (Little.double d) = N.double (of_lu d).
Proof.
apply of_lu_double_gen.
Qed.
Lemma of_lu_succ_double d : of_lu (Little.succ_double d) = N.succ_double (of_lu d).
Proof.
apply of_lu_double_gen.
Qed.
(** First bijection result *)
Lemma of_to (p:positive) : Pos.of_hex_uint (Pos.to_hex_uint p) = Npos p.
Proof.
unfold Pos.to_hex_uint.
rewrite of_lu_rev.
induction p; simpl; trivial.
-
now rewrite of_lu_succ_double, IHp.
-
now rewrite of_lu_double, IHp.
Qed.
(** The other direction *)
Definition to_lu n := match n with | N0 => Hexadecimal.zero | Npos p => Pos.to_little_hex_uint p end.
Lemma succ_double_alt d : Little.succ_double d = Little.succ (Little.double d).
Proof.
now induction d.
Qed.
Lemma double_succ d : Little.double (Little.succ d) = Little.succ (Little.succ_double d).
Proof.
induction d; simpl; f_equal; auto using succ_double_alt.
Qed.
Lemma to_lu_succ n : to_lu (N.succ n) = Little.succ (to_lu n).
Proof.
destruct n; simpl; trivial.
induction p; simpl; rewrite ?IHp; auto using succ_double_alt, double_succ.
Qed.
Lemma nat_iter_S n {A} (f:A->A) i : Nat.iter (S n) f i = f (Nat.iter n f i).
Proof.
reflexivity.
Qed.
Lemma nat_iter_0 {A} (f:A->A) i : Nat.iter 0 f i = i.
Proof.
reflexivity.
Qed.
Lemma to_lhex_tenfold p : to_lu (0x10 * Npos p) = D0 (to_lu (Npos p)).
Proof.
induction p using Pos.peano_rect.
-
trivial.
-
change (N.pos (Pos.succ p)) with (N.succ (N.pos p)).
rewrite N.mul_succ_r.
change 0x10 with (Nat.iter 0x10%nat N.succ 0) at 2.
rewrite ?nat_iter_S, nat_iter_0.
rewrite !N.add_succ_r, N.add_0_r, !to_lu_succ, IHp.
destruct (to_lu (N.pos p)); simpl; auto.
Qed.
Lemma of_lu_0 d : of_lu d = 0 <-> nztail d = Nil.
Proof.
induction d; try simpl_of_lu; split; trivial; try discriminate; try (intros H; now apply N.eq_add_0 in H).
-
rewrite N.add_0_l.
intros H.
apply N.eq_mul_0_r in H; [|easy].
rewrite IHd in H.
simpl.
now rewrite H.
-
simpl.
destruct (nztail d); try discriminate.
now destruct IHd as [_ ->].
Qed.
Lemma to_of_lu_tenfold d : to_lu (of_lu d) = lnorm d -> to_lu (0x10 * of_lu d) = lnorm (D0 d).
Proof.
intro IH.
destruct (N.eq_dec (of_lu d) 0) as [H|H].
-
rewrite H.
simpl.
rewrite of_lu_0 in H.
unfold lnorm.
simpl.
now rewrite H.
-
destruct (of_lu d) eqn:Eq; [easy| ].
rewrite to_lhex_tenfold; auto.
rewrite IH.
rewrite <- Eq in H.
rewrite of_lu_0 in H.
unfold lnorm.
simpl.
now destruct (nztail d).
Qed.
Lemma Nadd_alt n m : n + m = Nat.iter (N.to_nat n) N.succ m.
Proof.
destruct n.
1:trivial.
induction p using Pos.peano_rect.
-
now rewrite N.add_1_l.
-
change (N.pos (Pos.succ p)) with (N.succ (N.pos p)).
now rewrite N.add_succ_l, IHp, N2Nat.inj_succ.
Qed.
Ltac simpl_to_nat := simpl N.to_nat; unfold Pos.to_nat; simpl Pos.iter_op.
Lemma to_of_lu d : to_lu (of_lu d) = lnorm d.
Proof.
induction d; [reflexivity|..]; simpl_of_lu; rewrite Nadd_alt; simpl_to_nat; rewrite ?nat_iter_S, nat_iter_0, ?to_lu_succ, to_of_lu_tenfold by assumption; unfold lnorm; simpl nztail; destruct nztail; reflexivity.
Qed.
(** Second bijection result *)
Lemma to_of (d:uint) : N.to_hex_uint (Pos.of_hex_uint d) = unorm d.
Proof.
rewrite of_uint_alt.
unfold N.to_hex_uint, Pos.to_hex_uint.
destruct (of_lu (rev d)) eqn:H.
-
rewrite of_lu_0 in H.
rewrite <- rev_lnorm_rev.
unfold lnorm.
now rewrite H.
-
change (Pos.to_little_hex_uint p) with (to_lu (N.pos p)).
rewrite <- H.
rewrite to_of_lu.
apply rev_lnorm_rev.
Qed.
(** Some consequences *)
Lemma to_uint_nonzero p : Pos.to_hex_uint p <> zero.
Proof.
intro E.
generalize (of_to p).
now rewrite E.
Qed.
Lemma to_uint_nonnil p : Pos.to_hex_uint p <> Nil.
Proof.
intros E.
generalize (of_to p).
now rewrite E.
Qed.
Lemma to_uint_inj p p' : Pos.to_hex_uint p = Pos.to_hex_uint p' -> p = p'.
Proof.
intro E.
assert (E' : N.pos p = N.pos p').
{
now rewrite <- (of_to p), <- (of_to p'), E.
}
now injection E'.
Qed.
Lemma to_uint_pos_surj d : unorm d<>zero -> exists p, Pos.to_hex_uint p = unorm d.
Proof.
intros.
destruct (Pos.of_hex_uint d) eqn:E.
-
destruct H.
generalize (to_of d).
now rewrite E.
-
exists p.
generalize (to_of d).
now rewrite E.
Qed.
Lemma of_uint_norm d : Pos.of_hex_uint (unorm d) = Pos.of_hex_uint d.
Proof.
now induction d.
Qed.
Lemma of_inj d d' : Pos.of_hex_uint d = Pos.of_hex_uint d' -> unorm d = unorm d'.
Proof.
intros.
rewrite <- !to_of.
now f_equal.
Qed.
Lemma of_iff d d' : Pos.of_hex_uint d = Pos.of_hex_uint d' <-> unorm d = unorm d'.
Proof.
split.
-
apply of_inj.
-
intros E.
rewrite <- of_uint_norm, E.
apply of_uint_norm.
Qed.
(* various lemmas *)
Lemma nztail_to_hex_uint p : let (h, n) := Hexadecimal.nztail (Pos.to_hex_uint p) in Npos p = Pos.of_hex_uint h * 0x10^(N.of_nat n).
Proof.
rewrite <-(of_to p), <-(rev_rev (Pos.to_hex_uint p)), of_lu_rev.
unfold Hexadecimal.nztail.
rewrite rev_rev.
induction (rev (Pos.to_hex_uint p)); [reflexivity| | now simpl N.of_nat; simpl N.pow; rewrite N.mul_1_r, of_lu_rev..].
revert IHu.
set (t := _ u); case t; clear t; intros u0 n H.
rewrite of_lu_eqn; unfold hd, tl.
rewrite N.add_0_l, H, Nat2N.inj_succ, N.pow_succ_r'; ring.
Qed.
Definition double d := rev (Little.double (rev d)).
Lemma double_unorm d : double (unorm d) = unorm (double d).
Proof.
unfold double.
rewrite <-!rev_lnorm_rev, !rev_rev, <-!to_of_lu, of_lu_double.
now case of_lu; [now simpl|]; intro p; induction p.
Qed.
Lemma double_nzhead d : double (nzhead d) = nzhead (double d).
Proof.
unfold double.
rewrite <-!rev_nztail_rev, !rev_rev.
apply f_equal; generalize (rev d); clear d; intro d.
cut (Little.double (nztail d) = nztail (Little.double d) /\ Little.succ_double (nztail d) = nztail (Little.succ_double d)).
{
now simpl.
}
now induction d; [|split; simpl; rewrite <-?(proj1 IHd), <-?(proj2 IHd); case nztail..].
Qed.
Lemma of_hex_uint_double d : Pos.of_hex_uint (double d) = N.double (Pos.of_hex_uint d).
Proof.
now unfold double; rewrite of_lu_rev, of_lu_double, <-of_lu_rev, rev_rev.
Qed.
End Unsigned.
(** Conversion from/to signed decimal numbers *)
Module Signed.
Lemma of_to (p:positive) : Pos.of_hex_int (Pos.to_hex_int p) = Some p.
Proof.
unfold Pos.to_hex_int, Pos.of_hex_int, norm.
now rewrite Unsigned.of_to.
Qed.
Lemma to_of (d:int)(p:positive) : Pos.of_hex_int d = Some p -> Pos.to_hex_int p = norm d.
Proof.
unfold Pos.of_hex_int.
destruct d; [ | intros [=]].
simpl norm.
rewrite <- Unsigned.to_of.
destruct (Pos.of_hex_uint d); now intros [= <-].
Qed.
Lemma to_int_inj p p' : Pos.to_hex_int p = Pos.to_hex_int p' -> p = p'.
Proof.
intro E.
assert (E' : Some p = Some p').
{
now rewrite <- (of_to p), <- (of_to p'), E.
}
now injection E'.
Qed.
Lemma to_int_pos_surj d : unorm d <> zero -> exists p, Pos.to_hex_int p = norm (Pos d).
Proof.
simpl.
unfold Pos.to_hex_int.
intros H.
destruct (Unsigned.to_uint_pos_surj d H) as (p,Hp).
exists p.
now f_equal.
Qed.
Lemma of_int_norm d : Pos.of_hex_int (norm d) = Pos.of_hex_int d.
Proof.
unfold Pos.of_int.
destruct d.
-
simpl.
now rewrite Unsigned.of_uint_norm.
-
simpl.
now destruct (nzhead d) eqn:H.
Qed.
Lemma of_inj_pos d d' : Pos.of_hex_int (Pos d) = Pos.of_hex_int (Pos d') -> unorm d = unorm d'.
Proof.
unfold Pos.of_hex_int.
destruct (Pos.of_hex_uint d) eqn:Hd, (Pos.of_hex_uint d') eqn:Hd'; intros [=].
-
apply Unsigned.of_inj; now rewrite Hd, Hd'.
-
apply Unsigned.of_inj; rewrite Hd, Hd'; now f_equal.
Qed.
End Signed.