Timings for FMapAVL.v

  1. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./FSets/FMapAVL.timing
  2. /home/gitlab-runner/builds/gGKko-aj/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./FSets/FMapAVL.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Finite map library. *) (** * FMapAVL *) (** This module implements maps using AVL trees. It follows the implementation from Ocaml's standard library. See the comments at the beginning of FSetAVL for more details. *)
Require Import FunInd FMapInterface FMapList ZArith Int.
Set Implicit Arguments.
Unset Strict Implicit.
(** Notations and helper lemma about pairs *)
Declare Scope pair_scope.
Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.
(** * The Raw functor Functor of pure functions + separate proofs of invariant preservation *)
Module Raw (Import I:Int)(X: OrderedType).
Local Open Scope pair_scope.
Local Open Scope lazy_bool_scope.
Local Open Scope Int_scope.
Local Notation int := I.t.
Definition key := X.t.
#[global] Hint Transparent key : core.
(** * Trees *) (** * Trees The fifth field of [Node] is the height of the tree *)
#[universes(template)] Inductive tree {elt : Type} := | Leaf : tree | Node : tree -> key -> elt -> tree -> int -> tree.
Arguments tree : clear implicits.
Section Elt.
Variable elt : Type.
Notation t := (tree elt).
Implicit Types m : t.
(** * Basic functions on trees: height and cardinal *)
Definition height (m : t) : int := match m with | Leaf => 0 | Node _ _ _ _ h => h end.
Fixpoint cardinal (m : t) : nat := match m with | Leaf => 0%nat | Node l _ _ r _ => S (cardinal l + cardinal r) end.
(** * Empty Map *)
Definition empty : t := Leaf.
(** * Emptyness test *)
Definition is_empty m := match m with Leaf => true | _ => false end.
(** * Membership *) (** The [mem] function is deciding membership. It exploits the [bst] property to achieve logarithmic complexity. *)
Fixpoint mem x m : bool := match m with | Leaf => false | Node l y _ r _ => match X.compare x y with | LT _ => mem x l | EQ _ => true | GT _ => mem x r end end.
Fixpoint find x m : option elt := match m with | Leaf => None | Node l y d r _ => match X.compare x y with | LT _ => find x l | EQ _ => Some d | GT _ => find x r end end.
(** * Helper functions *) (** [create l x r] creates a node, assuming [l] and [r] to be balanced and [|height l - height r| <= 2]. *)
Definition create l x e r := Node l x e r (max (height l) (height r) + 1).
(** [bal l x e r] acts as [create], but performs one step of rebalancing if necessary, i.e. assumes [|height l - height r| <= 3]. *)
Definition assert_false := create.
Definition bal l x d r := let hl := height l in let hr := height r in if gt_le_dec hl (hr+2) then match l with | Leaf => assert_false l x d r | Node ll lx ld lr _ => if ge_lt_dec (height ll) (height lr) then create ll lx ld (create lr x d r) else match lr with | Leaf => assert_false l x d r | Node lrl lrx lrd lrr _ => create (create ll lx ld lrl) lrx lrd (create lrr x d r) end end else if gt_le_dec hr (hl+2) then match r with | Leaf => assert_false l x d r | Node rl rx rd rr _ => if ge_lt_dec (height rr) (height rl) then create (create l x d rl) rx rd rr else match rl with | Leaf => assert_false l x d r | Node rll rlx rld rlr _ => create (create l x d rll) rlx rld (create rlr rx rd rr) end end else create l x d r.
(** * Insertion *)
Fixpoint add x d m := match m with | Leaf => Node Leaf x d Leaf 1 | Node l y d' r h => match X.compare x y with | LT _ => bal (add x d l) y d' r | EQ _ => Node l y d r h | GT _ => bal l y d' (add x d r) end end.
(** * Extraction of minimum binding Morally, [remove_min] is to be applied to a non-empty tree [t = Node l x e r h]. Since we can't deal here with [assert false] for [t=Leaf], we pre-unpack [t] (and forget about [h]). *)
Fixpoint remove_min l x d r : t*(key*elt) := match l with | Leaf => (r,(x,d)) | Node ll lx ld lr lh => let (l',m) := remove_min ll lx ld lr in (bal l' x d r, m) end.
(** * Merging two trees [merge t1 t2] builds the union of [t1] and [t2] assuming all elements of [t1] to be smaller than all elements of [t2], and [|height t1 - height t2| <= 2]. *)
Definition merge s1 s2 := match s1,s2 with | Leaf, _ => s2 | _, Leaf => s1 | _, Node l2 x2 d2 r2 h2 => match remove_min l2 x2 d2 r2 with (s2',(x,d)) => bal s1 x d s2' end end.
(** * Deletion *)
Fixpoint remove x m := match m with | Leaf => Leaf | Node l y d r h => match X.compare x y with | LT _ => bal (remove x l) y d r | EQ _ => merge l r | GT _ => bal l y d (remove x r) end end.
(** * join Same as [bal] but does not assume anything regarding heights of [l] and [r]. *)
Fixpoint join l : key -> elt -> t -> t := match l with | Leaf => add | Node ll lx ld lr lh => fun x d => fix join_aux (r:t) : t := match r with | Leaf => add x d l | Node rl rx rd rr rh => if gt_le_dec lh (rh+2) then bal ll lx ld (join lr x d r) else if gt_le_dec rh (lh+2) then bal (join_aux rl) rx rd rr else create l x d r end end.
(** * Splitting [split x m] returns a triple [(l, o, r)] where - [l] is the set of elements of [m] that are [< x] - [r] is the set of elements of [m] that are [> x] - [o] is the result of [find x m]. *)
Record triple := mktriple { t_left:t; t_opt:option elt; t_right:t }.
Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
Fixpoint split x m : triple := match m with | Leaf => << Leaf, None, Leaf >> | Node l y d r h => match X.compare x y with | LT _ => let (ll,o,rl) := split x l in << ll, o, join rl y d r >> | EQ _ => << l, Some d, r >> | GT _ => let (rl,o,rr) := split x r in << join l y d rl, o, rr >> end end.
(** * Concatenation Same as [merge] but does not assume anything about heights. *)
Definition concat m1 m2 := match m1, m2 with | Leaf, _ => m2 | _ , Leaf => m1 | _, Node l2 x2 d2 r2 _ => let (m2',xd) := remove_min l2 x2 d2 r2 in join m1 xd#1 xd#2 m2' end.
(** * Elements *) (** [elements_tree_aux acc t] catenates the elements of [t] in infix order to the list [acc] *)
Fixpoint elements_aux (acc : list (key*elt)) m : list (key*elt) := match m with | Leaf => acc | Node l x d r _ => elements_aux ((x,d) :: elements_aux acc r) l end.
(** then [elements] is an instantiation with an empty [acc] *)
Definition elements := elements_aux nil.
(** * Fold *)
Fixpoint fold (A : Type) (f : key -> elt -> A -> A) (m : t) : A -> A := fun a => match m with | Leaf => a | Node l x d r _ => fold f r (f x d (fold f l a)) end.
(** * Comparison *)
Variable cmp : elt->elt->bool.
(** ** Enumeration of the elements of a tree *)
Inductive enumeration := | End : enumeration | More : key -> elt -> t -> enumeration -> enumeration.
(** [cons m e] adds the elements of tree [m] on the head of enumeration [e]. *)
Fixpoint cons m e : enumeration := match m with | Leaf => e | Node l x d r h => cons l (More x d r e) end.
(** One step of comparison of elements *)
Definition equal_more x1 d1 (cont:enumeration->bool) e2 := match e2 with | End => false | More x2 d2 r2 e2 => match X.compare x1 x2 with | EQ _ => cmp d1 d2 &&& cont (cons r2 e2) | _ => false end end.
(** Comparison of left tree, middle element, then right tree *)
Fixpoint equal_cont m1 (cont:enumeration->bool) e2 := match m1 with | Leaf => cont e2 | Node l1 x1 d1 r1 _ => equal_cont l1 (equal_more x1 d1 (equal_cont r1 cont)) e2 end.
(** Initial continuation *)
Definition equal_end e2 := match e2 with End => true | _ => false end.
(** The complete comparison *)
Definition equal m1 m2 := equal_cont m1 equal_end (cons m2 End).
End Elt.
Notation t := tree.
Arguments Leaf : clear implicits.
Arguments Node [elt].
Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
Notation "t #l" := (t_left t) (at level 9, format "t '#l'").
Notation "t #o" := (t_opt t) (at level 9, format "t '#o'").
Notation "t #r" := (t_right t) (at level 9, format "t '#r'").
(** * Map *)
Fixpoint map (elt elt' : Type)(f : elt -> elt')(m : t elt) : t elt' := match m with | Leaf _ => Leaf _ | Node l x d r h => Node (map f l) x (f d) (map f r) h end.
(* * Mapi *)
Fixpoint mapi (elt elt' : Type)(f : key -> elt -> elt')(m : t elt) : t elt' := match m with | Leaf _ => Leaf _ | Node l x d r h => Node (mapi f l) x (f x d) (mapi f r) h end.
(** * Map with removal *)
Fixpoint map_option (elt elt' : Type)(f : key -> elt -> option elt')(m : t elt) : t elt' := match m with | Leaf _ => Leaf _ | Node l x d r h => match f x d with | Some d' => join (map_option f l) x d' (map_option f r) | None => concat (map_option f l) (map_option f r) end end.
(** * Optimized map2 Suggestion by B. Gregoire: a [map2] function with specialized arguments that allows bypassing some tree traversal. Instead of one [f0] of type [key -> option elt -> option elt' -> option elt''], we ask here for: - [f] which is a specialisation of [f0] when first option isn't [None] - [mapl] treats a [tree elt] with [f0] when second option is [None] - [mapr] treats a [tree elt'] with [f0] when first option is [None] The idea is that [mapl] and [mapr] can be instantaneous (e.g. the identity or some constant function). *)
Section Map2_opt.
Variable elt elt' elt'' : Type.
Variable f : key -> elt -> option elt' -> option elt''.
Variable mapl : t elt -> t elt''.
Variable mapr : t elt' -> t elt''.
Fixpoint map2_opt m1 m2 := match m1, m2 with | Leaf _, _ => mapr m2 | _, Leaf _ => mapl m1 | Node l1 x1 d1 r1 h1, _ => let (l2',o2,r2') := split x1 m2 in match f x1 d1 o2 with | Some e => join (map2_opt l1 l2') x1 e (map2_opt r1 r2') | None => concat (map2_opt l1 l2') (map2_opt r1 r2') end end.
End Map2_opt.
(** * Map2 The [map2] function of the Map interface can be implemented via [map2_opt] and [map_option]. *)
Section Map2.
Variable elt elt' elt'' : Type.
Variable f : option elt -> option elt' -> option elt''.
Definition map2 : t elt -> t elt' -> t elt'' := map2_opt (fun _ d o => f (Some d) o) (map_option (fun _ d => f (Some d) None)) (map_option (fun _ d' => f None (Some d'))).
End Map2.
(** * Invariants *)
Section Invariants.
Variable elt : Type.
(** ** Occurrence in a tree *)
Inductive MapsTo (x : key)(e : elt) : t elt -> Prop := | MapsRoot : forall l r h y, X.eq x y -> MapsTo x e (Node l y e r h) | MapsLeft : forall l r h y e', MapsTo x e l -> MapsTo x e (Node l y e' r h) | MapsRight : forall l r h y e', MapsTo x e r -> MapsTo x e (Node l y e' r h).
Inductive In (x : key) : t elt -> Prop := | InRoot : forall l r h y e, X.eq x y -> In x (Node l y e r h) | InLeft : forall l r h y e', In x l -> In x (Node l y e' r h) | InRight : forall l r h y e', In x r -> In x (Node l y e' r h).
Definition In0 k m := exists e:elt, MapsTo k e m.
(** ** Binary search trees *) (** [lt_tree x s]: all elements in [s] are smaller than [x] (resp. greater for [gt_tree]) *)
Definition lt_tree x m := forall y, In y m -> X.lt y x.
Definition gt_tree x m := forall y, In y m -> X.lt x y.
(** [bst t] : [t] is a binary search tree *)
Inductive bst : t elt -> Prop := | BSLeaf : bst (Leaf _) | BSNode : forall x e l r h, bst l -> bst r -> lt_tree x l -> gt_tree x r -> bst (Node l x e r h).
End Invariants.
(** * Correctness proofs, isolated in a sub-module *)
Module Proofs.
Module MX := OrderedTypeFacts X.
Module PX := KeyOrderedType X.
Module L := FMapList.Raw X.
Functional Scheme mem_ind := Induction for mem Sort Prop.
Functional Scheme find_ind := Induction for find Sort Prop.
Functional Scheme bal_ind := Induction for bal Sort Prop.
Functional Scheme add_ind := Induction for add Sort Prop.
Functional Scheme remove_min_ind := Induction for remove_min Sort Prop.
Functional Scheme merge_ind := Induction for merge Sort Prop.
Functional Scheme remove_ind := Induction for remove Sort Prop.
Functional Scheme concat_ind := Induction for concat Sort Prop.
Functional Scheme split_ind := Induction for split Sort Prop.
Functional Scheme map_option_ind := Induction for map_option Sort Prop.
Functional Scheme map2_opt_ind := Induction for map2_opt Sort Prop.
(** * Automation and dedicated tactics. *)
#[global] Hint Constructors tree MapsTo In bst : core.
#[global] Hint Unfold lt_tree gt_tree : core.
Tactic Notation "factornode" ident(l) ident(x) ident(d) ident(r) ident(h) "as" ident(s) := set (s:=Node l x d r h) in *; clearbody s; clear l x d r h.
(** A tactic for cleaning hypothesis after use of functional induction. *)
Ltac clearf := match goal with | H : (@Logic.eq (Compare _ _ _ _) _ _) |- _ => clear H; clearf | H : (@Logic.eq (sumbool _ _) _ _) |- _ => clear H; clearf | _ => idtac end.
(** A tactic to repeat [inversion_clear] on all hyps of the form [(f (Node ...))] *)
Ltac inv f := match goal with | H:f (Leaf _) |- _ => inversion_clear H; inv f | H:f _ (Leaf _) |- _ => inversion_clear H; inv f | H:f _ _ (Leaf _) |- _ => inversion_clear H; inv f | H:f _ _ _ (Leaf _) |- _ => inversion_clear H; inv f | H:f (Node _ _ _ _ _) |- _ => inversion_clear H; inv f | H:f _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f | H:f _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f | H:f _ _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f | _ => idtac end.
Ltac inv_all f := match goal with | H: f _ |- _ => inversion_clear H; inv f | H: f _ _ |- _ => inversion_clear H; inv f | H: f _ _ _ |- _ => inversion_clear H; inv f | H: f _ _ _ _ |- _ => inversion_clear H; inv f | _ => idtac end.
(** Helper tactic concerning order of elements. *)
Ltac order := match goal with | U: lt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order | U: gt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order | _ => MX.order end.
Ltac intuition_in := repeat (intuition auto; inv In; inv MapsTo).
(* Function/Functional Scheme can't deal with internal fix. Let's do its job by hand: *)
Ltac join_tac := intros ?l; induction l as [| ?ll _ ?lx ?ld ?lr ?Hlr ?lh]; [ | intros ?x ?d ?r; induction r as [| ?rl ?Hrl ?rx ?rd ?rr _ ?rh]; unfold join; [ | destruct (gt_le_dec lh (rh+2)) as [?GT|?LE]; [ match goal with |- context [ bal ?u ?v ?w ?z ] => replace (bal u v w z) with (bal ll lx ld (join lr x d (Node rl rx rd rr rh))); [ | auto] end | destruct (gt_le_dec rh (lh+2)) as [?GT'|?LE']; [ match goal with |- context [ bal ?u ?v ?w ?z ] => replace (bal u v w z) with (bal (join (Node ll lx ld lr lh) x d rl) rx rd rr); [ | auto] end | ] ] ] ]; intros.
Section Elt.
Variable elt:Type.
Implicit Types m r : t elt.
(** * Basic results about [MapsTo], [In], [lt_tree], [gt_tree], [height] *) (** Facts about [MapsTo] and [In]. *)
Lemma MapsTo_In : forall k e m, MapsTo k e m -> In k m.
Proof.
induction 1; auto.
Qed.
#[local] Hint Resolve MapsTo_In : core.
Lemma In_MapsTo : forall k m, In k m -> exists e, MapsTo k e m.
Proof.
induction 1; try destruct IHIn as (e,He); exists e; auto.
Qed.
Lemma In_alt : forall k m, In0 k m <-> In k m.
Proof.
split.
-
intros (e,H); eauto.
-
unfold In0; apply In_MapsTo; auto.
Qed.
Lemma MapsTo_1 : forall m x y e, X.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof.
induction m; simpl; intuition_in; eauto with ordered_type.
Qed.
#[local] Hint Immediate MapsTo_1 : core.
Lemma In_1 : forall m x y, X.eq x y -> In x m -> In y m.
Proof.
intros m x y; induction m; simpl; intuition_in; eauto with ordered_type.
Qed.
Lemma In_node_iff : forall l x e r h y, In y (Node l x e r h) <-> In y l \/ X.eq y x \/ In y r.
Proof.
intuition_in.
Qed.
(** Results about [lt_tree] and [gt_tree] *)
Lemma lt_leaf : forall x, lt_tree x (Leaf elt).
Proof.
unfold lt_tree; intros; intuition_in.
Qed.
Lemma gt_leaf : forall x, gt_tree x (Leaf elt).
Proof.
unfold gt_tree; intros; intuition_in.
Qed.
Lemma lt_tree_node : forall x y l r e h, lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node l y e r h).
Proof.
unfold lt_tree in *; intuition_in; order.
Qed.
Lemma gt_tree_node : forall x y l r e h, gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node l y e r h).
Proof.
unfold gt_tree in *; intuition_in; order.
Qed.
#[local] Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node : core.
Lemma lt_left : forall x y l r e h, lt_tree x (Node l y e r h) -> lt_tree x l.
Proof.
intuition_in.
Qed.
Lemma lt_right : forall x y l r e h, lt_tree x (Node l y e r h) -> lt_tree x r.
Proof.
intuition_in.
Qed.
Lemma gt_left : forall x y l r e h, gt_tree x (Node l y e r h) -> gt_tree x l.
Proof.
intuition_in.
Qed.
Lemma gt_right : forall x y l r e h, gt_tree x (Node l y e r h) -> gt_tree x r.
Proof.
intuition_in.
Qed.
#[local] Hint Resolve lt_left lt_right gt_left gt_right : core.
Lemma lt_tree_not_in : forall x m, lt_tree x m -> ~ In x m.
Proof.
intros; intro; generalize (H _ H0); order.
Qed.
Lemma lt_tree_trans : forall x y, X.lt x y -> forall m, lt_tree x m -> lt_tree y m.
Proof.
eauto with ordered_type.
Qed.
Lemma gt_tree_not_in : forall x m, gt_tree x m -> ~ In x m.
Proof.
intros; intro; generalize (H _ H0); order.
Qed.
Lemma gt_tree_trans : forall x y, X.lt y x -> forall m, gt_tree x m -> gt_tree y m.
Proof.
eauto with ordered_type.
Qed.
#[local] Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans : core.
(** * Empty map *)
Definition Empty m := forall (a:key)(e:elt) , ~ MapsTo a e m.
Lemma empty_bst : bst (empty elt).
Proof.
unfold empty; auto.
Qed.
Lemma empty_1 : Empty (empty elt).
Proof.
unfold empty, Empty; intuition_in.
Qed.
(** * Emptyness test *)
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof.
destruct m as [|r x e l h]; simpl; auto.
intro H; elim (H x e); auto with ordered_type.
Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof.
destruct m; simpl; intros; try discriminate; red; intuition_in.
Qed.
(** * Membership *)
Lemma mem_1 : forall m x, bst m -> In x m -> mem x m = true.
Proof.
intros m x; functional induction (mem x m); auto; intros; clearf; inv bst; intuition_in; order.
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
intros m x; functional induction (mem x m); auto; intros; discriminate.
Qed.
Lemma find_1 : forall m x e, bst m -> MapsTo x e m -> find x m = Some e.
Proof.
intros m x; functional induction (find x m); auto; intros; clearf; inv bst; intuition_in; simpl; auto; try solve [order | absurd (X.lt x y); eauto with ordered_type | absurd (X.lt y x); eauto with ordered_type].
Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof.
intros m x; functional induction (find x m); subst; intros; clearf; try discriminate.
-
constructor 2; auto.
-
inversion H; auto.
-
constructor 3; auto.
Qed.
Lemma find_iff : forall m x e, bst m -> (find x m = Some e <-> MapsTo x e m).
Proof.
split; auto using find_1, find_2.
Qed.
Lemma find_in : forall m x, find x m <> None -> In x m.
Proof.
intros.
case_eq (find x m); [intros|congruence].
apply MapsTo_In with e; apply find_2; auto.
Qed.
Lemma in_find : forall m x, bst m -> In x m -> find x m <> None.
Proof.
intros.
destruct (In_MapsTo H0) as (d,Hd).
rewrite (find_1 H Hd); discriminate.
Qed.
Lemma find_in_iff : forall m x, bst m -> (find x m <> None <-> In x m).
Proof.
split; auto using find_in, in_find.
Qed.
Lemma not_find_iff : forall m x, bst m -> (find x m = None <-> ~In x m).
Proof.
split; intros.
-
red; intros.
elim (in_find H H1 H0).
-
case_eq (find x m); [ intros | auto ].
elim H0; apply find_in; congruence.
Qed.
Lemma find_find : forall m m' x, find x m = find x m' <-> (forall d, find x m = Some d <-> find x m' = Some d).
Proof.
intros; destruct (find x m); destruct (find x m'); split; intros; try split; try congruence.
-
rewrite H; auto.
-
symmetry; rewrite <- H; auto.
-
rewrite H; auto.
Qed.
Lemma find_mapsto_equiv : forall m m' x, bst m -> bst m' -> (find x m = find x m' <-> (forall d, MapsTo x d m <-> MapsTo x d m')).
Proof.
intros m m' x Hm Hm'.
rewrite find_find.
split; intros H d; specialize H with d.
-
rewrite <- 2 find_iff; auto.
-
rewrite 2 find_iff; auto.
Qed.
Lemma find_in_equiv : forall m m' x, bst m -> bst m' -> find x m = find x m' -> (In x m <-> In x m').
Proof.
split; intros; apply find_in; [ rewrite <- H1 | rewrite H1 ]; apply in_find; auto.
Qed.
(** * Helper functions *)
Lemma create_bst : forall l x e r, bst l -> bst r -> lt_tree x l -> gt_tree x r -> bst (create l x e r).
Proof.
unfold create; auto.
Qed.
#[local] Hint Resolve create_bst : core.
Lemma create_in : forall l x e r y, In y (create l x e r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
unfold create; split; [ inversion_clear 1 | ]; intuition.
Qed.
Lemma bal_bst : forall l x e r, bst l -> bst r -> lt_tree x l -> gt_tree x r -> bst (bal l x e r).
Proof.
intros l x e r; functional induction (bal l x e r); intros; clearf; inv bst; repeat apply create_bst; auto; unfold create; try constructor; (apply lt_tree_node || apply gt_tree_node); auto with ordered_type; (eapply lt_tree_trans || eapply gt_tree_trans); eauto with ordered_type.
Qed.
#[local] Hint Resolve bal_bst : core.
Lemma bal_in : forall l x e r y, In y (bal l x e r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
intros l x e r; functional induction (bal l x e r); intros; clearf; rewrite !create_in; intuition_in.
Qed.
Lemma bal_mapsto : forall l x e r y e', MapsTo y e' (bal l x e r) <-> MapsTo y e' (create l x e r).
Proof.
intros l x e r; functional induction (bal l x e r); intros; clearf; unfold assert_false, create; intuition_in.
Qed.
Lemma bal_find : forall l x e r y, bst l -> bst r -> lt_tree x l -> gt_tree x r -> find y (bal l x e r) = find y (create l x e r).
Proof.
intros; rewrite find_mapsto_equiv; auto; intros; apply bal_mapsto.
Qed.
(** * Insertion *)
Lemma add_in : forall m x y e, In y (add x e m) <-> X.eq y x \/ In y m.
Proof.
intros m x y e; functional induction (add x e m); auto; intros; try (rewrite bal_in, IHt); intuition_in.
apply In_1 with x; auto with ordered_type.
Qed.
Lemma add_bst : forall m x e, bst m -> bst (add x e m).
Proof.
intros m x e; functional induction (add x e m); intros; inv bst; try apply bal_bst; auto; intro z; rewrite add_in; intuition.
-
apply MX.eq_lt with x; auto.
-
apply MX.lt_eq with x; auto with ordered_type.
Qed.
#[local] Hint Resolve add_bst : core.
Lemma add_1 : forall m x y e, X.eq x y -> MapsTo y e (add x e m).
Proof.
intros m x y e; functional induction (add x e m); intros; inv bst; try rewrite bal_mapsto; unfold create; eauto with ordered_type.
Qed.
Lemma add_2 : forall m x y e e', ~X.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
intros m x y e e'; induction m; simpl; auto.
destruct (X.compare x k); intros; inv bst; try rewrite bal_mapsto; unfold create; auto; inv MapsTo; auto; order.
Qed.
Lemma add_3 : forall m x y e e', ~X.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
intros m x y e e'; induction m; simpl; auto.
-
intros; inv MapsTo; auto; order.
-
destruct (X.compare x k); intro; try rewrite bal_mapsto; auto; unfold create; intros; inv MapsTo; auto; order.
Qed.
Lemma add_find : forall m x y e, bst m -> find y (add x e m) = match X.compare y x with EQ _ => Some e | _ => find y m end.
Proof.
intros.
assert (~X.eq x y -> find y (add x e m) = find y m).
-
intros; rewrite find_mapsto_equiv; auto.
split; eauto using add_2, add_3.
-
destruct X.compare; try (apply H0; order).
auto using find_1, add_1 with ordered_type.
Qed.
(** * Extraction of minimum binding *)
Lemma remove_min_in : forall l x e r h y, In y (Node l x e r h) <-> X.eq y (remove_min l x e r)#2#1 \/ In y (remove_min l x e r)#1.
Proof.
intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
-
intuition_in.
-
rewrite e0 in *; simpl; intros.
rewrite bal_in, In_node_iff, IHp; intuition.
Qed.
Lemma remove_min_mapsto : forall l x e r h y e', MapsTo y e' (Node l x e r h) <-> ((X.eq y (remove_min l x e r)#2#1) /\ e' = (remove_min l x e r)#2#2) \/ MapsTo y e' (remove_min l x e r)#1.
Proof.
intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
-
intuition_in; subst; auto.
-
rewrite e0 in *; simpl; intros.
rewrite bal_mapsto; auto; unfold create.
simpl in *;destruct (IHp _x y e').
intuition.
+
inversion_clear H1; intuition.
+
inversion_clear H3; intuition.
Qed.
Lemma remove_min_bst : forall l x e r h, bst (Node l x e r h) -> bst (remove_min l x e r)#1.
Proof.
intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
-
inv bst; auto.
-
inversion_clear H; inversion_clear H0.
apply bal_bst; auto.
+
rewrite e0 in *; simpl in *; apply (IHp _x); auto.
+
intro; intros.
generalize (remove_min_in ll lx ld lr _x y).
rewrite e0; simpl in *.
destruct 1.
apply H2; intuition.
Qed.
#[local] Hint Resolve remove_min_bst : core.
Lemma remove_min_gt_tree : forall l x e r h, bst (Node l x e r h) -> gt_tree (remove_min l x e r)#2#1 (remove_min l x e r)#1.
Proof.
intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
-
inv bst; auto.
-
inversion_clear H.
intro; intro.
rewrite e0 in *;simpl in *.
generalize (IHp _x H0).
generalize (remove_min_in ll lx ld lr _x m#1).
rewrite e0; simpl; intros.
rewrite (bal_in l' x d r y) in H.
assert (In m#1 (Node ll lx ld lr _x)) by (rewrite H4; auto with ordered_type); clear H4.
assert (X.lt m#1 x) by order.
decompose [or] H; order.
Qed.
#[local] Hint Resolve remove_min_gt_tree : core.
Lemma remove_min_find : forall l x e r h y, bst (Node l x e r h) -> find y (Node l x e r h) = match X.compare y (remove_min l x e r)#2#1 with | LT _ => None | EQ _ => Some (remove_min l x e r)#2#2 | GT _ => find y (remove_min l x e r)#1 end.
Proof.
intros.
destruct X.compare.
-
rewrite not_find_iff; auto.
rewrite remove_min_in; red; destruct 1 as [H'|H']; [ order | ].
generalize (remove_min_gt_tree H H'); order.
-
apply find_1; auto.
rewrite remove_min_mapsto; auto.
-
rewrite find_mapsto_equiv; eauto; intros.
rewrite remove_min_mapsto; intuition; order.
Qed.
(** * Merging two trees *)
Lemma merge_in : forall m1 m2 y, bst m1 -> bst m2 -> (In y (merge m1 m2) <-> In y m1 \/ In y m2).
Proof.
intros m1 m2; functional induction (merge m1 m2);intros; try factornode _x _x0 _x1 _x2 _x3 as m1.
-
intuition_in.
-
intuition_in.
-
rewrite bal_in, remove_min_in, e1; simpl; intuition.
Qed.
Lemma merge_mapsto : forall m1 m2 y e, bst m1 -> bst m2 -> (MapsTo y e (merge m1 m2) <-> MapsTo y e m1 \/ MapsTo y e m2).
Proof.
intros m1 m2; functional induction (merge m1 m2); intros; try factornode _x _x0 _x1 _x2 _x3 as m1.
-
intuition_in.
-
intuition_in.
-
rewrite bal_mapsto, remove_min_mapsto, e1; simpl; auto.
unfold create.
intuition; subst; auto.
inversion_clear H1; intuition.
Qed.
Lemma merge_bst : forall m1 m2, bst m1 -> bst m2 -> (forall y1 y2 : key, In y1 m1 -> In y2 m2 -> X.lt y1 y2) -> bst (merge m1 m2).
Proof.
intros m1 m2; functional induction (merge m1 m2); intros; auto; try factornode _x _x0 _x1 _x2 _x3 as m1.
apply bal_bst; auto.
-
generalize (remove_min_bst H0); rewrite e1; simpl in *; auto.
-
intro; intro.
apply H1; auto.
generalize (remove_min_in l2 x2 d2 r2 _x4 x); rewrite e1; simpl; intuition auto with relations.
-
generalize (remove_min_gt_tree H0); rewrite e1; simpl; auto.
Qed.
(** * Deletion *)
Lemma remove_in : forall m x y, bst m -> (In y (remove x m) <-> ~ X.eq y x /\ In y m).
Proof.
intros m x; functional induction (remove x m); simpl; intros.
-
intuition_in.
-
(* LT *)
inv bst; clear e0.
rewrite bal_in; auto.
generalize (IHt y0 H0); intuition; [ order | order | intuition_in ].
-
(* EQ *)
inv bst; clear e0.
rewrite merge_in; intuition; [ order | order | intuition_in ].
elim H4; eauto with ordered_type.
-
(* GT *)
inv bst; clear e0.
rewrite bal_in; auto.
generalize (IHt y0 H1); intuition; [ order | order | intuition_in ].
Qed.
Lemma remove_bst : forall m x, bst m -> bst (remove x m).
Proof.
intros m x; functional induction (remove x m); simpl; intros.
-
auto.
-
(* LT *)
inv bst.
apply bal_bst; auto.
intro; intro.
rewrite (remove_in x y0 H0) in H; auto.
destruct H; eauto.
-
(* EQ *)
inv bst.
apply merge_bst; eauto with ordered_type.
-
(* GT *)
inv bst.
apply bal_bst; auto.
intro; intro.
rewrite (remove_in x y0 H1) in H; auto.
destruct H; eauto.
Qed.
Lemma remove_1 : forall m x y, bst m -> X.eq x y -> ~ In y (remove x m).
Proof.
intros; rewrite remove_in; intuition auto with relations.
Qed.
Lemma remove_2 : forall m x y e, bst m -> ~X.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof.
intros m x y e; induction m; simpl; auto.
destruct (X.compare x k); intros; inv bst; try rewrite bal_mapsto; unfold create; auto; try solve [inv MapsTo; auto].
rewrite merge_mapsto; auto.
inv MapsTo; auto; order.
Qed.
Lemma remove_3 : forall m x y e, bst m -> MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
intros m x y e; induction m; simpl; auto.
destruct (X.compare x k); intros Bs; inv bst; try rewrite bal_mapsto; auto; unfold create.
-
intros; inv MapsTo; auto.
-
rewrite merge_mapsto; intuition.
-
intros; inv MapsTo; auto.
Qed.
(** * join *)
Lemma join_in : forall l x d r y, In y (join l x d r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
join_tac.
-
simpl.
rewrite add_in; intuition_in.
-
rewrite add_in; intuition_in.
-
rewrite bal_in, Hlr; clear Hlr Hrl; intuition_in.
-
rewrite bal_in, Hrl; clear Hlr Hrl; intuition_in.
-
apply create_in.
Qed.
Lemma join_bst : forall l x d r, bst l -> bst r -> lt_tree x l -> gt_tree x r -> bst (join l x d r).
Proof.
join_tac; auto; try (simpl; auto; fail); inv bst; apply bal_bst; auto; clear Hrl Hlr; intro; intros; rewrite join_in in *.
-
intuition; [ apply MX.lt_eq with x | ]; eauto with ordered_type.
-
intuition; [ apply MX.eq_lt with x | ]; eauto with ordered_type.
Qed.
#[local] Hint Resolve join_bst : core.
Lemma join_find : forall l x d r y, bst l -> bst r -> lt_tree x l -> gt_tree x r -> find y (join l x d r) = find y (create l x d r).
Proof.
join_tac; auto; inv bst; simpl (join (Leaf elt)); try (assert (X.lt lx x) by auto with ordered_type); try (assert (X.lt x rx) by auto with ordered_type); rewrite ?add_find, ?bal_find; auto.
-
simpl; destruct X.compare; auto.
rewrite not_find_iff; auto; intro; order.
-
simpl; repeat (destruct X.compare; auto); try (order; fail).
rewrite not_find_iff by auto; intro.
assert (X.lt y x) by auto; order.
-
simpl; rewrite Hlr; simpl; auto.
repeat (destruct X.compare; auto); order.
-
intros u Hu; rewrite join_in in Hu.
destruct Hu as [Hu|[Hu|Hu]]; try generalize (H2 _ Hu); order.
-
simpl; rewrite Hrl; simpl; auto.
repeat (destruct X.compare; auto); order.
-
intros u Hu; rewrite join_in in Hu.
destruct Hu as [Hu|[Hu|Hu]]; order.
Qed.
(** * split *)
Lemma split_in_1 : forall m x, bst m -> forall y, (In y (split x m)#l <-> In y m /\ X.lt y x).
Proof.
intros m x; functional induction (split x m); simpl; intros; inv bst; try clear e0.
-
intuition_in.
-
rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
-
intuition_in; order.
-
rewrite join_in.
rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
Lemma split_in_2 : forall m x, bst m -> forall y, (In y (split x m)#r <-> In y m /\ X.lt x y).
Proof.
intros m x; functional induction (split x m); subst; simpl; intros; inv bst; try clear e0.
-
intuition_in.
-
rewrite join_in.
rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
-
intuition_in; order.
-
rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
Lemma split_in_3 : forall m x, bst m -> (split x m)#o = find x m.
Proof.
intros m x; functional induction (split x m); subst; simpl; auto; intros; inv bst; try clear e0; destruct X.compare; try order; trivial; rewrite <- IHt, e1; auto.
Qed.
Lemma split_bst : forall m x, bst m -> bst (split x m)#l /\ bst (split x m)#r.
Proof.
intros m x; functional induction (split x m); subst; simpl; intros; inv bst; try clear e0; try rewrite e1 in *; simpl in *; intuition; apply join_bst; auto.
-
intros y0.
generalize (split_in_2 x H0 y0); rewrite e1; simpl; intuition.
-
intros y0.
generalize (split_in_1 x H1 y0); rewrite e1; simpl; intuition.
Qed.
Lemma split_lt_tree : forall m x, bst m -> lt_tree x (split x m)#l.
Proof.
intros m x B y Hy; rewrite split_in_1 in Hy; intuition.
Qed.
Lemma split_gt_tree : forall m x, bst m -> gt_tree x (split x m)#r.
Proof.
intros m x B y Hy; rewrite split_in_2 in Hy; intuition.
Qed.
Lemma split_find : forall m x y, bst m -> find y m = match X.compare y x with | LT _ => find y (split x m)#l | EQ _ => (split x m)#o | GT _ => find y (split x m)#r end.
Proof.
intros m x; functional induction (split x m); subst; simpl; intros; inv bst; try clear e0; try rewrite e1 in *; simpl in *; [ destruct X.compare; auto | .. ]; try match goal with E:split ?x ?t = _, B:bst ?t |- _ => generalize (split_in_1 x B)(split_in_2 x B)(split_bst x B); rewrite E; simpl; destruct 3 end.
-
rewrite join_find, IHt; auto; clear IHt; simpl.
+
repeat (destruct X.compare; auto); order.
+
intro y1; rewrite H4; intuition.
-
repeat (destruct X.compare; auto); order.
-
rewrite join_find, IHt; auto; clear IHt; simpl.
+
repeat (destruct X.compare; auto); order.
+
intros y1; rewrite H; intuition.
Qed.
(** * Concatenation *)
Lemma concat_in : forall m1 m2 y, In y (concat m1 m2) <-> In y m1 \/ In y m2.
Proof.
intros m1 m2; functional induction (concat m1 m2); intros; try factornode _x _x0 _x1 _x2 _x3 as m1.
-
intuition_in.
-
intuition_in.
-
rewrite join_in, remove_min_in, e1; simpl; intuition.
Qed.
Lemma concat_bst : forall m1 m2, bst m1 -> bst m2 -> (forall y1 y2, In y1 m1 -> In y2 m2 -> X.lt y1 y2) -> bst (concat m1 m2).
Proof.
intros m1 m2; functional induction (concat m1 m2); intros; auto; try factornode _x _x0 _x1 _x2 _x3 as m1.
apply join_bst; auto.
-
change (bst (m2',xd)#1).
rewrite <-e1; eauto.
-
intros y Hy.
apply H1; auto.
rewrite remove_min_in, e1; simpl; auto with ordered_type.
-
change (gt_tree (m2',xd)#2#1 (m2',xd)#1).
rewrite <-e1; eauto.
Qed.
#[local] Hint Resolve concat_bst : core.
Lemma concat_find : forall m1 m2 y, bst m1 -> bst m2 -> (forall y1 y2, In y1 m1 -> In y2 m2 -> X.lt y1 y2) -> find y (concat m1 m2) = match find y m2 with Some d => Some d | None => find y m1 end.
Proof.
intros m1 m2; functional induction (concat m1 m2); intros; auto; try factornode _x _x0 _x1 _x2 _x3 as m1.
-
simpl; destruct (find y m2); auto.
-
generalize (remove_min_find y H0)(remove_min_in l2 x2 d2 r2 _x4) (remove_min_bst H0)(remove_min_gt_tree H0); rewrite e1; simpl fst; simpl snd; intros.
inv bst.
rewrite H2, join_find; auto; clear H2.
+
simpl; destruct X.compare as [Hlt| |Hlt]; simpl; auto.
destruct (find y m2'); auto.
symmetry; rewrite not_find_iff; auto; intro.
apply (MX.lt_not_gt Hlt); apply H1; auto; rewrite H3; auto with ordered_type.
+
intros z Hz; apply H1; auto; rewrite H3; auto with ordered_type.
Qed.
(** * Elements *)
Notation eqk := (PX.eqk (elt:= elt)).
Notation eqke := (PX.eqke (elt:= elt)).
Notation ltk := (PX.ltk (elt:= elt)).
Lemma elements_aux_mapsto : forall (s:t elt) acc x e, InA eqke (x,e) (elements_aux acc s) <-> MapsTo x e s \/ InA eqke (x,e) acc.
Proof.
induction s as [ | l Hl x e r Hr h ]; simpl; auto.
-
intuition.
inversion H0.
-
intros.
rewrite Hl.
destruct (Hr acc x0 e0); clear Hl Hr.
intuition; inversion_clear H3; intuition auto with ordered_type.
destruct H0; simpl in *; subst; intuition.
Qed.
Lemma elements_mapsto : forall (s:t elt) x e, InA eqke (x,e) (elements s) <-> MapsTo x e s.
Proof.
intros; generalize (elements_aux_mapsto s nil x e); intuition.
inversion_clear H0.
Qed.
Lemma elements_in : forall (s:t elt) x, L.PX.In x (elements s) <-> In x s.
Proof.
intros.
unfold L.PX.In.
rewrite <- In_alt; unfold In0.
firstorder.
-
exists x0.
rewrite <- elements_mapsto; auto.
-
exists x0.
unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.
Lemma elements_aux_sort : forall (s:t elt) acc, bst s -> sort ltk acc -> (forall x e y, InA eqke (x,e) acc -> In y s -> X.lt y x) -> sort ltk (elements_aux acc s).
Proof.
induction s as [ | l Hl y e r Hr h]; simpl; intuition.
inv bst.
apply Hl; auto.
-
constructor.
+
apply Hr; eauto.
+
apply InA_InfA with (eqA:=eqke).
*
auto with typeclass_instances.
*
intros (y',e') H6.
destruct (elements_aux_mapsto r acc y' e'); intuition.
--
red; simpl; eauto.
--
red; simpl; eauto with ordered_type.
-
intros x e0 y0 H H6.
inversion_clear H.
+
destruct H7; simpl in *.
order.
+
destruct (elements_aux_mapsto r acc x e0); intuition eauto with ordered_type.
Qed.
Lemma elements_sort : forall s : t elt, bst s -> sort ltk (elements s).
Proof.
intros; unfold elements; apply elements_aux_sort; auto.
intros; inversion H0.
Qed.
#[local] Hint Resolve elements_sort : core.
Lemma elements_nodup : forall s : t elt, bst s -> NoDupA eqk (elements s).
Proof.
intros; apply PX.Sort_NoDupA; auto.
Qed.
Lemma elements_aux_cardinal : forall (m:t elt) acc, (length acc + cardinal m)%nat = length (elements_aux acc m).
Proof.
simple induction m; simpl; intuition.
rewrite <- H; simpl.
rewrite <- H0, Nat.add_succ_r, (Nat.add_comm (cardinal t)), Nat.add_assoc.
reflexivity.
Qed.
Lemma elements_cardinal : forall (m:t elt), cardinal m = length (elements m).
Proof.
exact (fun m => elements_aux_cardinal m nil).
Qed.
Lemma elements_app : forall (s:t elt) acc, elements_aux acc s = elements s ++ acc.
Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold elements; simpl.
rewrite 2 IHs1, IHs2, !app_nil_r, <- !app_assoc; auto.
Qed.
Lemma elements_node : forall (t1 t2:t elt) x e z l, elements t1 ++ (x,e) :: elements t2 ++ l = elements (Node t1 x e t2 z) ++ l.
Proof.
unfold elements; simpl; intros.
rewrite !elements_app, !app_nil_r, <- !app_assoc; auto.
Qed.
(** * Fold *)
Definition fold' (A : Type) (f : key -> elt -> A -> A)(s : t elt) := L.fold f (elements s).
Lemma fold_equiv_aux : forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A) acc, L.fold f (elements_aux acc s) a = L.fold f acc (fold f s a).
Proof.
simple induction s.
-
simpl; intuition.
-
simpl; intros.
rewrite H.
simpl.
apply H0.
Qed.
Lemma fold_equiv : forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A), fold f s a = fold' f s a.
Proof.
unfold fold', elements.
simple induction s; simpl; auto; intros.
rewrite fold_equiv_aux.
rewrite H0.
simpl; auto.
Qed.
Lemma fold_1 : forall (s:t elt)(Hs:bst s)(A : Type)(i:A)(f : key -> elt -> A -> A), fold f s i = fold_left (fun a p => f p#1 p#2 a) (elements s) i.
Proof.
intros.
rewrite fold_equiv.
unfold fold'.
rewrite L.fold_1.
unfold L.elements; auto.
Qed.
(** * Comparison *) (** [flatten_e e] returns the list of elements of the enumeration [e] i.e. the list of elements actually compared *)
Fixpoint flatten_e (e : enumeration elt) : list (key*elt) := match e with | End _ => nil | More x e t r => (x,e) :: elements t ++ flatten_e r end.
Lemma flatten_e_elements : forall (l:t elt) r x d z e, elements l ++ flatten_e (More x d r e) = elements (Node l x d r z) ++ flatten_e e.
Proof.
intros; apply elements_node.
Qed.
Lemma cons_1 : forall (s:t elt) e, flatten_e (cons s e) = elements s ++ flatten_e e.
Proof.
induction s; auto; intros.
simpl flatten_e; rewrite IHs1; apply flatten_e_elements; auto.
Qed.
(** Proof of correction for the comparison *)
Variable cmp : elt->elt->bool.
Definition IfEq b l1 l2 := L.equal cmp l1 l2 = b.
Lemma cons_IfEq : forall b x1 x2 d1 d2 l1 l2, X.eq x1 x2 -> cmp d1 d2 = true -> IfEq b l1 l2 -> IfEq b ((x1,d1)::l1) ((x2,d2)::l2).
Proof.
unfold IfEq; destruct b; simpl; intros; destruct X.compare; simpl; try rewrite H0; auto; order.
Qed.
Lemma equal_end_IfEq : forall e2, IfEq (equal_end e2) nil (flatten_e e2).
Proof.
destruct e2; red; auto.
Qed.
Lemma equal_more_IfEq : forall x1 d1 (cont:enumeration elt -> bool) x2 d2 r2 e2 l, IfEq (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) -> IfEq (equal_more cmp x1 d1 cont (More x2 d2 r2 e2)) ((x1,d1)::l) (flatten_e (More x2 d2 r2 e2)).
Proof.
unfold IfEq; simpl; intros; destruct X.compare; simpl; auto.
rewrite <-andb_lazy_alt; f_equal; auto.
Qed.
Lemma equal_cont_IfEq : forall m1 cont e2 l, (forall e, IfEq (cont e) l (flatten_e e)) -> IfEq (equal_cont cmp m1 cont e2) (elements m1 ++ l) (flatten_e e2).
Proof.
induction m1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; intros; auto.
rewrite <- elements_node; simpl.
apply Hl1; auto.
clear e2; intros [|x2 d2 r2 e2].
-
simpl; red; auto.
-
apply equal_more_IfEq.
rewrite <- cons_1; auto.
Qed.
Lemma equal_IfEq : forall (m1 m2:t elt), IfEq (equal cmp m1 m2) (elements m1) (elements m2).
Proof.
intros; unfold equal.
rewrite <- (app_nil_r (elements m1)).
replace (elements m2) with (flatten_e (cons m2 (End _))) by (rewrite cons_1; simpl; rewrite app_nil_r; auto).
apply equal_cont_IfEq.
intros.
apply equal_end_IfEq; auto.
Qed.
Definition Equivb m m' := (forall k, In k m <-> In k m') /\ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Lemma Equivb_elements : forall s s', Equivb s s' <-> L.Equivb cmp (elements s) (elements s').
Proof.
unfold Equivb, L.Equivb; split; split; intros.
-
do 2 rewrite elements_in; firstorder.
-
destruct H.
apply (H2 k); rewrite <- elements_mapsto; auto.
-
do 2 rewrite <- elements_in; firstorder.
-
destruct H.
apply (H2 k); unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.
Lemma equal_Equivb : forall (s s': t elt), bst s -> bst s' -> (equal cmp s s' = true <-> Equivb s s').
Proof.
intros s s' B B'.
rewrite Equivb_elements, <- equal_IfEq.
split; [apply L.equal_2|apply L.equal_1]; auto.
Qed.
End Elt.
Section Map.
Variable elt elt' : Type.
Variable f : elt -> elt'.
Lemma map_1 : forall (m: t elt)(x:key)(e:elt), MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma map_2 : forall (m: t elt)(x:key), In x (map f m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma map_bst : forall m, bst m -> bst (map f m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto; red; auto using map_2.
Qed.
End Map.
Section Mapi.
Variable elt elt' : Type.
Variable f : key -> elt -> elt'.
Lemma mapi_1 : forall (m: tree elt)(x:key)(e:elt), MapsTo x e m -> exists y, X.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
induction m; simpl; inversion_clear 1; auto.
-
exists k; auto with ordered_type.
-
destruct (IHm1 _ _ H0).
exists x0; intuition.
-
destruct (IHm2 _ _ H0).
exists x0; intuition.
Qed.
Lemma mapi_2 : forall (m: t elt)(x:key), In x (mapi f m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma mapi_bst : forall m, bst m -> bst (mapi f m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto; red; auto using mapi_2.
Qed.
End Mapi.
Section Map_option.
Variable elt elt' : Type.
Variable f : key -> elt -> option elt'.
Hypothesis f_compat : forall x x' d, X.eq x x' -> f x d = f x' d.
Lemma map_option_2 : forall (m:t elt)(x:key), In x (map_option f m) -> exists d, MapsTo x d m /\ f x d <> None.
Proof.
intros m; functional induction (map_option f m); simpl; auto; intros.
-
inversion H.
-
rewrite join_in in H; destruct H as [H|[H|H]].
+
exists d; split; auto; rewrite (f_compat d H), e0; discriminate.
+
destruct (IHt _ H) as (d0 & ? & ?); exists d0; auto.
+
destruct (IHt0 _ H) as (d0 & ? & ?); exists d0; auto.
-
rewrite concat_in in H; destruct H as [H|H].
+
destruct (IHt _ H) as (d0 & ? & ?); exists d0; auto.
+
destruct (IHt0 _ H) as (d0 & ? & ?); exists d0; auto.
Qed.
Lemma map_option_bst : forall m, bst m -> bst (map_option f m).
Proof.
intros m; functional induction (map_option f m); simpl; auto; intros; inv bst.
-
apply join_bst; auto; intros y H; destruct (map_option_2 H) as (d0 & ? & ?); eauto using MapsTo_In.
-
apply concat_bst; auto; intros y y' H H'.
destruct (map_option_2 H) as (d0 & ? & ?).
destruct (map_option_2 H') as (d0' & ? & ?).
eapply X.lt_trans with x; eauto using MapsTo_In.
Qed.
#[local] Hint Resolve map_option_bst : core.
Ltac nonify e := replace e with (@None elt) by (symmetry; rewrite not_find_iff; auto; intro; order).
Lemma map_option_find : forall (m:t elt)(x:key), bst m -> find x (map_option f m) = match (find x m) with Some d => f x d | None => None end.
Proof.
intros m; functional induction (map_option f m); simpl; auto; intros; inv bst; rewrite join_find || rewrite concat_find; auto; simpl; try destruct X.compare as [Hlt|Heq|Hlt]; simpl; auto.
-
rewrite (f_compat d Heq); auto.
-
intros y H; destruct (map_option_2 H) as (? & ? & ?); eauto using MapsTo_In.
-
intros y H; destruct (map_option_2 H) as (? & ? & ?); eauto using MapsTo_In.
-
rewrite <- IHt, IHt0; auto; nonify (find x0 r); auto.
-
rewrite IHt, IHt0; auto; nonify (find x0 r); nonify (find x0 l); auto.
rewrite (f_compat d Heq); auto.
-
rewrite <- IHt0, IHt; auto; nonify (find x0 l); auto.
destruct (find x0 (map_option f r)); auto.
-
intros y y' H H'.
destruct (map_option_2 H) as (? & ? & ?).
destruct (map_option_2 H') as (? & ? & ?).
eapply X.lt_trans with x; eauto using MapsTo_In.
Qed.
End Map_option.
Section Map2_opt.
Variable elt elt' elt'' : Type.
Variable f0 : key -> option elt -> option elt' -> option elt''.
Variable f : key -> elt -> option elt' -> option elt''.
Variable mapl : t elt -> t elt''.
Variable mapr : t elt' -> t elt''.
Hypothesis f0_f : forall x d o, f x d o = f0 x (Some d) o.
Hypothesis mapl_bst : forall m, bst m -> bst (mapl m).
Hypothesis mapr_bst : forall m', bst m' -> bst (mapr m').
Hypothesis mapl_f0 : forall x m, bst m -> find x (mapl m) = match find x m with Some d => f0 x (Some d) None | None => None end.
Hypothesis mapr_f0 : forall x m', bst m' -> find x (mapr m') = match find x m' with Some d' => f0 x None (Some d') | None => None end.
Hypothesis f0_compat : forall x x' o o', X.eq x x' -> f0 x o o' = f0 x' o o'.
Notation map2_opt := (map2_opt f mapl mapr).
Lemma map2_opt_2 : forall m m' y, bst m -> bst m' -> In y (map2_opt m m') -> In y m \/ In y m'.
Proof.
intros m m'; functional induction (map2_opt m m'); intros; auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2; try (generalize (split_in_1 x1 H0 y)(split_in_2 x1 H0 y) (split_bst x1 H0); rewrite e1; simpl; destruct 3; inv bst).
-
right; apply find_in.
generalize (in_find (mapr_bst H0) H1); rewrite mapr_f0; auto.
destruct (find y m2); auto; intros; discriminate.
-
factornode l1 x1 d1 r1 _x as m1.
left; apply find_in.
generalize (in_find (mapl_bst H) H1); rewrite mapl_f0; auto.
destruct (find y m1); auto; intros; discriminate.
-
rewrite join_in in H1; destruct H1 as [H'|[H'|H']]; auto.
+
destruct (IHt1 y H6 H4 H'); intuition.
+
destruct (IHt0 y H7 H5 H'); intuition.
-
rewrite concat_in in H1; destruct H1 as [H'|H']; auto.
+
destruct (IHt1 y H6 H4 H'); intuition.
+
destruct (IHt0 y H7 H5 H'); intuition.
Qed.
Lemma map2_opt_bst : forall m m', bst m -> bst m' -> bst (map2_opt m m').
Proof.
intros m m'; functional induction (map2_opt m m'); intros; auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2; inv bst; generalize (split_in_1 x1 H0)(split_in_2 x1 H0)(split_bst x1 H0); rewrite e1; simpl in *; destruct 3.
-
apply join_bst; auto.
+
intros y Hy; specialize H with y.
destruct (map2_opt_2 H1 H6 Hy); intuition.
+
intros y Hy; specialize H5 with y.
destruct (map2_opt_2 H2 H7 Hy); intuition.
-
apply concat_bst; auto.
intros y y' Hy Hy'; specialize H with y; specialize H5 with y'.
apply X.lt_trans with x1.
+
destruct (map2_opt_2 H1 H6 Hy); intuition.
+
destruct (map2_opt_2 H2 H7 Hy'); intuition.
Qed.
#[local] Hint Resolve map2_opt_bst : core.
Ltac map2_aux := match goal with | H : In ?x _ \/ In ?x ?m, H' : find ?x ?m = find ?x ?m', B:bst ?m, B':bst ?m' |- _ => destruct H; [ intuition_in; order | rewrite <-(find_in_equiv B B' H'); auto ] end.
Ltac nonify t := match t with (find ?y (map2_opt ?m ?m')) => replace t with (@None elt''); [ | symmetry; rewrite not_find_iff; auto; intro; destruct (@map2_opt_2 m m' y); auto; order ] end.
Lemma map2_opt_1 : forall m m' y, bst m -> bst m' -> In y m \/ In y m' -> find y (map2_opt m m') = f0 y (find y m) (find y m').
Proof.
intros m m'; functional induction (map2_opt m m'); intros; auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2; try (generalize (split_in_1 x1 H0)(split_in_2 x1 H0) (split_in_3 x1 H0)(split_bst x1 H0)(split_find x1 y H0) (split_lt_tree (x:=x1) H0)(split_gt_tree (x:=x1) H0); rewrite e1; simpl in *; destruct 4; intros; inv bst; subst o2; rewrite H7, ?join_find, ?concat_find; auto).
-
simpl; destruct H1; [ inversion_clear H1 | ].
rewrite mapr_f0; auto.
generalize (in_find H0 H1); destruct (find y m2); intuition.
-
factornode l1 x1 d1 r1 _x as m1.
destruct H1; [ | inversion_clear H1 ].
rewrite mapl_f0; auto.
generalize (in_find H H1); destruct (find y m1); intuition.
-
simpl; destruct X.compare; auto.
+
apply IHt1; auto; map2_aux.
+
rewrite (@f0_compat y x1), <- f0_f; auto.
+
apply IHt0; auto; map2_aux.
-
intros z Hz; destruct (@map2_opt_2 l1 l2' z); auto.
-
intros z Hz; destruct (@map2_opt_2 r1 r2' z); auto.
-
destruct X.compare.
+
nonify (find y (map2_opt r1 r2')).
apply IHt1; auto; map2_aux.
+
nonify (find y (map2_opt r1 r2')).
nonify (find y (map2_opt l1 l2')).
rewrite (@f0_compat y x1), <- f0_f; auto.
+
nonify (find y (map2_opt l1 l2')).
rewrite IHt0; auto; [ | map2_aux ].
destruct (f0 y (find y r1) (find y r2')); auto.
-
intros y1 y2 Hy1 Hy2; apply X.lt_trans with x1.
+
destruct (@map2_opt_2 l1 l2' y1); auto.
+
destruct (@map2_opt_2 r1 r2' y2); auto.
Qed.
End Map2_opt.
Section Map2.
Variable elt elt' elt'' : Type.
Variable f : option elt -> option elt' -> option elt''.
Lemma map2_bst : forall m m', bst m -> bst m' -> bst (map2 f m m').
Proof.
unfold map2; intros.
apply map2_opt_bst with (fun _ => f); auto using map_option_bst; intros; rewrite map_option_find; auto.
Qed.
Lemma map2_1 : forall m m' y, bst m -> bst m' -> In y m \/ In y m' -> find y (map2 f m m') = f (find y m) (find y m').
Proof.
unfold map2; intros.
rewrite (map2_opt_1 (f0:=fun _ => f)); auto using map_option_bst; intros; rewrite map_option_find; auto.
Qed.
Lemma map2_2 : forall m m' y, bst m -> bst m' -> In y (map2 f m m') -> In y m \/ In y m'.
Proof.
unfold map2; intros.
eapply map2_opt_2 with (f0:=fun _ => f); try eassumption; trivial; intros.
-
apply map_option_bst; auto.
-
apply map_option_bst; auto.
-
rewrite map_option_find; auto.
-
rewrite map_option_find; auto.
Qed.
End Map2.
End Proofs.
End Raw.
(** * Encapsulation Now, in order to really provide a functor implementing [S], we need to encapsulate everything into a type of balanced binary search trees. *)
Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Module E := X.
Module Raw := Raw I X.
Import Raw.Proofs.
#[universes(template)] Record bst (elt:Type) := Bst {this :> Raw.tree elt; is_bst : Raw.bst this}.
Definition t := bst.
Definition key := E.t.
Section Elt.
Variable elt elt' elt'': Type.
Implicit Types m : t elt.
Implicit Types x y : key.
Implicit Types e : elt.
Definition empty : t elt := Bst (empty_bst elt).
Definition is_empty m : bool := Raw.is_empty (this m).
Definition add x e m : t elt := Bst (add_bst x e (is_bst m)).
Definition remove x m : t elt := Bst (remove_bst x (is_bst m)).
Definition mem x m : bool := Raw.mem x (this m).
Definition find x m : option elt := Raw.find x (this m).
Definition map f m : t elt' := Bst (map_bst f (is_bst m)).
Definition mapi (f:key->elt->elt') m : t elt' := Bst (mapi_bst f (is_bst m)).
Definition map2 f m (m':t elt') : t elt'' := Bst (map2_bst f (is_bst m) (is_bst m')).
Definition elements m : list (key*elt) := Raw.elements (this m).
Definition cardinal m := Raw.cardinal (this m).
Definition fold (A:Type) (f:key->elt->A->A) m i := Raw.fold (A:=A) f (this m) i.
Definition equal cmp m m' : bool := Raw.equal cmp (this m) (this m').
Definition MapsTo x e m : Prop := Raw.MapsTo x e (this m).
Definition In x m : Prop := Raw.In0 x (this m).
Definition Empty m : Prop := Empty (this m).
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @PX.eqk elt.
Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @PX.eqke elt.
Definition lt_key : (key*elt) -> (key*elt) -> Prop := @PX.ltk elt.
Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof.
intros m; exact (@MapsTo_1 _ (this m)).
Qed.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof.
unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_1; auto.
apply (is_bst m).
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_2; auto.
Qed.
Lemma empty_1 : Empty empty.
Proof.
exact (@empty_1 elt).
Qed.
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof.
intros m; exact (@is_empty_1 _ (this m)).
Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof.
intros m; exact (@is_empty_2 _ (this m)).
Qed.
Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
Proof.
intros m x y e; exact (@add_1 elt _ x y e).
Qed.
Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
intros m x y e e'; exact (@add_2 elt _ x y e e').
Qed.
Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
intros m x y e e'; exact (@add_3 elt _ x y e e').
Qed.
Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
Proof.
unfold In, remove; intros m x y; rewrite In_alt; simpl; apply remove_1; auto.
apply (is_bst m).
Qed.
Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof.
intros m x y e; exact (@remove_2 elt _ x y e (is_bst m)).
Qed.
Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
intros m x y e; exact (@remove_3 elt _ x y e (is_bst m)).
Qed.
Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
Proof.
intros m x e; exact (@find_1 elt _ x e (is_bst m)).
Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof.
intros m; exact (@find_2 elt (this m)).
Qed.
Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A), fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof.
intros m; exact (@fold_1 elt (this m) (is_bst m)).
Qed.
Lemma elements_1 : forall m x e, MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof.
intros; unfold elements, MapsTo, eq_key_elt; rewrite elements_mapsto; auto.
Qed.
Lemma elements_2 : forall m x e, InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof.
intros; unfold elements, MapsTo, eq_key_elt; rewrite <- elements_mapsto; auto.
Qed.
Lemma elements_3 : forall m, sort lt_key (elements m).
Proof.
intros m; exact (@elements_sort elt (this m) (is_bst m)).
Qed.
Lemma elements_3w : forall m, NoDupA eq_key (elements m).
Proof.
intros m; exact (@elements_nodup elt (this m) (is_bst m)).
Qed.
Lemma cardinal_1 : forall m, cardinal m = length (elements m).
Proof.
intro m; exact (@elements_cardinal elt (this m)).
Qed.
Definition Equal m m' := forall y, find y m = find y m'.
Definition Equiv (eq_elt:elt->elt->Prop) m m' := (forall k, In k m <-> In k m') /\ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb cmp := Equiv (Cmp cmp).
Lemma Equivb_Equivb : forall cmp m m', Equivb cmp m m' <-> Raw.Proofs.Equivb cmp m m'.
Proof.
intros; unfold Equivb, Equiv, Raw.Proofs.Equivb, In.
intuition.
-
generalize (H0 k); do 2 rewrite In_alt; intuition.
-
generalize (H0 k); do 2 rewrite In_alt; intuition.
-
generalize (H0 k); do 2 rewrite <- In_alt; intuition.
-
generalize (H0 k); do 2 rewrite <- In_alt; intuition.
Qed.
Lemma equal_1 : forall m m' cmp, Equivb cmp m m' -> equal cmp m m' = true.
Proof.
unfold equal; intros (m,b) (m',b') cmp; rewrite Equivb_Equivb; intros; simpl in *; rewrite equal_Equivb; auto.
Qed.
Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equivb cmp m m'.
Proof.
unfold equal; intros (m,b) (m',b') cmp; rewrite Equivb_Equivb; intros; simpl in *; rewrite <-equal_Equivb; auto.
Qed.
End Elt.
Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'), MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
intros elt elt' m x e f; exact (@map_1 elt elt' f (this m) x e).
Qed.
Lemma map_2 : forall (elt elt':Type)(m:t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
Proof.
intros elt elt' m x f; do 2 unfold In in *; do 2 rewrite In_alt; simpl.
apply map_2; auto.
Qed.
Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt) (f:key->elt->elt'), MapsTo x e m -> exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
intros elt elt' m x e f; exact (@mapi_1 elt elt' f (this m) x e).
Qed.
Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key) (f:key->elt->elt'), In x (mapi f m) -> In x m.
Proof.
intros elt elt' m x f; unfold In in *; do 2 rewrite In_alt; simpl; apply mapi_2; auto.
Qed.
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x m \/ In x m' -> find x (map2 f m m') = f (find x m) (find x m').
Proof.
unfold find, map2, In; intros elt elt' elt'' m m' x f.
do 2 rewrite In_alt; intros; simpl; apply map2_1; auto.
-
apply (is_bst m).
-
apply (is_bst m').
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x (map2 f m m') -> In x m \/ In x m'.
Proof.
unfold In, map2; intros elt elt' elt'' m m' x f.
do 3 rewrite In_alt; intros; simpl in *; eapply map2_2; eauto.
-
apply (is_bst m).
-
apply (is_bst m').
Qed.
End IntMake.
Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <: Sord with Module Data := D with Module MapS.E := X.
Module Data := D.
Module Import MapS := IntMake(I)(X).
Module LO := FMapList.Make_ord(X)(D).
Module R := Raw.
Module P := Raw.Proofs.
Definition t := MapS.t D.t.
Definition cmp e e' := match D.compare e e' with EQ _ => true | _ => false end.
(** One step of comparison of elements *)
Definition compare_more x1 d1 (cont:R.enumeration D.t -> comparison) e2 := match e2 with | R.End _ => Gt | R.More x2 d2 r2 e2 => match X.compare x1 x2 with | EQ _ => match D.compare d1 d2 with | EQ _ => cont (R.cons r2 e2) | LT _ => Lt | GT _ => Gt end | LT _ => Lt | GT _ => Gt end end.
(** Comparison of left tree, middle element, then right tree *)
Fixpoint compare_cont s1 (cont:R.enumeration D.t -> comparison) e2 := match s1 with | R.Leaf _ => cont e2 | R.Node l1 x1 d1 r1 _ => compare_cont l1 (compare_more x1 d1 (compare_cont r1 cont)) e2 end.
(** Initial continuation *)
Definition compare_end (e2:R.enumeration D.t) := match e2 with R.End _ => Eq | _ => Lt end.
(** The complete comparison *)
Definition compare_pure s1 s2 := compare_cont s1 compare_end (R.cons s2 (Raw.End _)).
(** Correctness of this comparison *)
Definition Cmp c := match c with | Eq => LO.eq_list | Lt => LO.lt_list | Gt => (fun l1 l2 => LO.lt_list l2 l1) end.
Lemma cons_Cmp : forall c x1 x2 d1 d2 l1 l2, X.eq x1 x2 -> D.eq d1 d2 -> Cmp c l1 l2 -> Cmp c ((x1,d1)::l1) ((x2,d2)::l2).
Proof.
destruct c; simpl; intros; P.MX.elim_comp; auto with ordered_type.
Qed.
#[global] Hint Resolve cons_Cmp : core.
Lemma compare_end_Cmp : forall e2, Cmp (compare_end e2) nil (P.flatten_e e2).
Proof.
destruct e2; simpl; auto.
Qed.
Lemma compare_more_Cmp : forall x1 d1 cont x2 d2 r2 e2 l, Cmp (cont (R.cons r2 e2)) l (R.elements r2 ++ P.flatten_e e2) -> Cmp (compare_more x1 d1 cont (R.More x2 d2 r2 e2)) ((x1,d1)::l) (P.flatten_e (R.More x2 d2 r2 e2)).
Proof.
simpl; intros; destruct X.compare; simpl; try destruct D.compare; simpl; auto; P.MX.elim_comp; auto.
Qed.
Lemma compare_cont_Cmp : forall s1 cont e2 l, (forall e, Cmp (cont e) l (P.flatten_e e)) -> Cmp (compare_cont s1 cont e2) (R.elements s1 ++ l) (P.flatten_e e2).
Proof.
induction s1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; intros; auto.
rewrite <- P.elements_node; simpl.
apply Hl1; auto.
clear e2.
intros [|x2 d2 r2 e2].
-
simpl; auto.
-
apply compare_more_Cmp.
rewrite <- P.cons_1; auto.
Qed.
Lemma compare_Cmp : forall s1 s2, Cmp (compare_pure s1 s2) (R.elements s1) (R.elements s2).
Proof.
intros; unfold compare_pure.
rewrite <- (app_nil_r (R.elements s1)).
replace (R.elements s2) with (P.flatten_e (R.cons s2 (R.End _))) by (rewrite P.cons_1; simpl; rewrite app_nil_r; auto).
auto using compare_cont_Cmp, compare_end_Cmp.
Qed.
(** The dependent-style [compare] *)
Definition eq (m1 m2 : t) := LO.eq_list (elements m1) (elements m2).
Definition lt (m1 m2 : t) := LO.lt_list (elements m1) (elements m2).
Definition compare (s s':t) : Compare lt eq s s'.
Proof.
destruct s as (s,b), s' as (s',b').
generalize (compare_Cmp s s').
destruct compare_pure; intros; [apply EQ|apply LT|apply GT]; red; auto.
Defined.
(* Proofs about [eq] and [lt] *)
Definition selements (m1 : t) := LO.MapS.Build_slist (P.elements_sort (is_bst m1)).
Definition seq (m1 m2 : t) := LO.eq (selements m1) (selements m2).
Definition slt (m1 m2 : t) := LO.lt (selements m1) (selements m2).
Lemma eq_seq : forall m1 m2, eq m1 m2 <-> seq m1 m2.
Proof.
unfold eq, seq, selements, elements, LO.eq; intuition.
Qed.
Lemma lt_slt : forall m1 m2, lt m1 m2 <-> slt m1 m2.
Proof.
unfold lt, slt, selements, elements, LO.lt; intuition.
Qed.
Lemma eq_1 : forall (m m' : t), Equivb cmp m m' -> eq m m'.
Proof.
intros m m'.
rewrite eq_seq; unfold seq.
rewrite Equivb_Equivb.
rewrite P.Equivb_elements.
auto using LO.eq_1.
Qed.
Lemma eq_2 : forall m m', eq m m' -> Equivb cmp m m'.
Proof.
intros m m'.
rewrite eq_seq; unfold seq.
rewrite Equivb_Equivb.
rewrite P.Equivb_elements.
intros.
generalize (LO.eq_2 H).
auto.
Qed.
Lemma eq_refl : forall m : t, eq m m.
Proof.
intros; rewrite eq_seq; unfold seq; intros; apply LO.eq_refl.
Qed.
Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
Proof.
intros m1 m2; rewrite 2 eq_seq; unfold seq; intros; apply LO.eq_sym; auto.
Qed.
Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
Proof.
intros m1 m2 M3; rewrite 3 eq_seq; unfold seq.
intros; eapply LO.eq_trans; eauto.
Qed.
Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
Proof.
intros m1 m2 m3; rewrite 3 lt_slt; unfold slt; intros; eapply LO.lt_trans; eauto.
Qed.
Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
Proof.
intros m1 m2; rewrite lt_slt, eq_seq; unfold slt, seq; intros; apply LO.lt_not_eq; auto.
Qed.
End IntMake_ord.
(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
Module Make (X: OrderedType) <: S with Module E := X :=IntMake(Z_as_Int)(X).
Module Make_ord (X: OrderedType)(D: OrderedType) <: Sord with Module Data := D with Module MapS.E := X :=IntMake_ord(Z_as_Int)(X)(D).