Timings for Field_theory.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./setoid_ring/Field_theory.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./setoid_ring/Field_theory.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************)
Require Ring.
Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List Morphisms.
Require Import ZArith_base.
Set Implicit Arguments.
(* Set Universe Polymorphism. *)
Section MakeFieldPol.
(* Field elements : R *)
Variable R:Type.
Declare Scope R_scope.
Bind Scope R_scope with R.
Delimit Scope R_scope with ring.
Local Open Scope R_scope.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
Variable (rdiv : R->R->R) (rinv : R->R).
Variable req : R -> R -> Prop.
Notation "0" := rO : R_scope.
Notation "1" := rI : R_scope.
Infix "+" := radd : R_scope.
Infix "-" := rsub : R_scope.
Infix "*" := rmul : R_scope.
Infix "/" := rdiv : R_scope.
Notation "- x" := (ropp x) : R_scope.
Notation "/ x" := (rinv x) : R_scope.
Infix "==" := req (at level 70, no associativity) : R_scope.
(* Equality properties *)
Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable SRinv_ext : forall p q, p == q -> / p == / q.
(* Field properties *)
Record almost_field_theory : Prop := mk_afield { AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req; AF_1_neq_0 : ~ 1 == 0; AFdiv_def : forall p q, p / q == p * / q; AFinv_l : forall p, ~ p == 0 -> / p * p == 1 }.
Section AlmostField.
Variable AFth : almost_field_theory.
Let ARth := (AF_AR AFth).
Let rI_neq_rO := (AF_1_neq_0 AFth).
Let rdiv_def := (AFdiv_def AFth).
Let rinv_l := (AFinv_l AFth).
Add Morphism radd with signature (req ==> req ==> req) as radd_ext.
Proof.
exact (Radd_ext Reqe).
Qed.
Add Morphism rmul with signature (req ==> req ==> req) as rmul_ext.
Proof.
exact (Rmul_ext Reqe).
Qed.
Add Morphism ropp with signature (req ==> req) as ropp_ext.
Proof.
exact (Ropp_ext Reqe).
Qed.
Add Morphism rsub with signature (req ==> req ==> req) as rsub_ext.
Proof.
exact (ARsub_ext Rsth Reqe ARth).
Qed.
Add Morphism rinv with signature (req ==> req) as rinv_ext.
Proof.
exact SRinv_ext.
Qed.
Let eq_trans := Setoid.Seq_trans _ _ Rsth.
Let eq_sym := Setoid.Seq_sym _ _ Rsth.
Let eq_refl := Setoid.Seq_refl _ _ Rsth.
Let radd_0_l := ARadd_0_l ARth.
Let radd_comm := ARadd_comm ARth.
Let radd_assoc := ARadd_assoc ARth.
Let rmul_1_l := ARmul_1_l ARth.
Let rmul_0_l := ARmul_0_l ARth.
Let rmul_comm := ARmul_comm ARth.
Let rmul_assoc := ARmul_assoc ARth.
Let rdistr_l := ARdistr_l ARth.
Let ropp_mul_l := ARopp_mul_l ARth.
Let ropp_add := ARopp_add ARth.
Let rsub_def := ARsub_def ARth.
Let radd_0_r := ARadd_0_r Rsth ARth.
Let rmul_0_r := ARmul_0_r Rsth ARth.
Let rmul_1_r := ARmul_1_r Rsth ARth.
Let ropp_0 := ARopp_zero Rsth Reqe ARth.
Let rdistr_r := ARdistr_r Rsth Reqe ARth.
(* Coefficients : C *)
Variable C: Type.
Declare Scope C_scope.
Bind Scope C_scope with C.
Delimit Scope C_scope with coef.
Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
Variable phi : C -> R.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi.
Notation "0" := cO : C_scope.
Notation "1" := cI : C_scope.
Infix "+" := cadd : C_scope.
Infix "-" := csub : C_scope.
Infix "*" := cmul : C_scope.
Notation "- x" := (copp x) : C_scope.
Infix "=?" := ceqb : C_scope.
Notation "[ x ]" := (phi x) (at level 0).
Let phi_0 := (morph0 CRmorph).
Let phi_1 := (morph1 CRmorph).
Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c =? c')%coef.
Proof.
generalize ((morph_eq CRmorph) c c').
destruct (c =? c')%coef; auto.
Qed.
(* Power coefficients : Cpow *)
Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
(* sign function *)
Variable get_sign : C -> option C.
Variable get_sign_spec : sign_theory copp ceqb get_sign.
Variable cdiv:C -> C -> C*C.
Variable cdiv_th : div_theory req cadd cmul phi cdiv.
Let rpow_pow := (rpow_pow_N pow_th).
(* Polynomial expressions : (PExpr C) *)
Declare Scope PE_scope.
Bind Scope PE_scope with PExpr.
Delimit Scope PE_scope with poly.
Notation NPEeval := (PEeval rO rI radd rmul rsub ropp phi Cp_phi rpow).
Notation "P @ l" := (NPEeval l P) (at level 10, no associativity).
Arguments PEc _ _%_coef.
Notation "0" := (PEc 0) : PE_scope.
Notation "1" := (PEc 1) : PE_scope.
Infix "+" := PEadd : PE_scope.
Infix "-" := PEsub : PE_scope.
Infix "*" := PEmul : PE_scope.
Notation "- e" := (PEopp e) : PE_scope.
Infix "^" := PEpow : PE_scope.
Definition NPEequiv e e' := forall l, e@l == e'@l.
Infix "===" := NPEequiv (at level 70, no associativity) : PE_scope.
Instance NPEequiv_eq : Equivalence NPEequiv.
Proof.
split; red; unfold NPEequiv; intros; [reflexivity|symmetry|etransitivity]; eauto.
Qed.
Instance NPEeval_ext : Proper (eq ==> NPEequiv ==> req) NPEeval.
Proof.
intros l l' <- e e' He.
now rewrite (He l).
Qed.
Notation Nnorm := (norm_subst cO cI cadd cmul csub copp ceqb cdiv).
Notation NPphi_dev := (Pphi_dev rO rI radd rmul rsub ropp cO cI ceqb phi get_sign).
Notation NPphi_pow := (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi rpow get_sign).
(* add abstract semi-ring to help with some proofs *)
Add Ring Rring : (ARth_SRth ARth).
(* additional ring properties *)
Lemma rsub_0_l r : 0 - r == - r.
Proof.
rewrite rsub_def; ring.
Qed.
Lemma rsub_0_r r : r - 0 == r.
Proof.
rewrite rsub_def, ropp_0; ring.
Qed.
(*************************************************************************** Properties of division ***************************************************************************)
Theorem rdiv_simpl p q : ~ q == 0 -> q * (p / q) == p.
Proof.
intros.
rewrite rdiv_def.
transitivity (/ q * q * p); [ ring | ].
now rewrite rinv_l.
Qed.
Instance rdiv_ext: Proper (req ==> req ==> req) rdiv.
Proof.
intros p1 p2 Ep q1 q2 Eq.
now rewrite !rdiv_def, Ep, Eq.
Qed.
Lemma rmul_reg_l p q1 q2 : ~ p == 0 -> p * q1 == p * q2 -> q1 == q2.
Proof.
intros H EQ.
assert (H' : p * (q1 / p) == p * (q2 / p)).
{
now rewrite !rdiv_def, !rmul_assoc, EQ.
}
now rewrite !rdiv_simpl in H'.
Qed.
Theorem field_is_integral_domain r1 r2 : ~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0.
Proof.
intros H1 H2.
contradict H2.
transitivity (/r1 * r1 * r2).
-
now rewrite rinv_l.
-
now rewrite <- rmul_assoc, H2.
Qed.
Theorem ropp_neq_0 r : ~ -(1) == 0 -> ~ r == 0 -> ~ -r == 0.
Proof.
intros.
setoid_replace (- r) with (- (1) * r).
-
apply field_is_integral_domain; trivial.
-
now rewrite <- ropp_mul_l, rmul_1_l.
Qed.
Theorem rdiv_r_r r : ~ r == 0 -> r / r == 1.
Proof.
intros.
rewrite rdiv_def, rmul_comm.
now apply rinv_l.
Qed.
Theorem rdiv1 r : r == r / 1.
Proof.
transitivity (1 * (r / 1)).
-
symmetry; apply rdiv_simpl.
apply rI_neq_rO.
-
apply rmul_1_l.
Qed.
Theorem rdiv2 a b c d : ~ b == 0 -> ~ d == 0 -> a / b + c / d == (a * d + c * b) / (b * d).
Proof.
intros H H0.
assert (~ b * d == 0) by now apply field_is_integral_domain.
apply rmul_reg_l with (b * d); trivial.
rewrite rdiv_simpl; trivial.
rewrite rdistr_r.
apply radd_ext.
-
now rewrite <- rmul_assoc, (rmul_comm d), rmul_assoc, rdiv_simpl.
-
now rewrite (rmul_comm c), <- rmul_assoc, rdiv_simpl.
Qed.
Theorem rdiv2b a b c d e : ~ (b*e) == 0 -> ~ (d*e) == 0 -> a / (b*e) + c / (d*e) == (a * d + c * b) / (b * (d * e)).
Proof.
intros H H0.
assert (~ b == 0) by (contradict H; rewrite H; ring).
assert (~ e == 0) by (contradict H; rewrite H; ring).
assert (~ d == 0) by (contradict H0; rewrite H0; ring).
assert (~ b * (d * e) == 0) by (repeat apply field_is_integral_domain; trivial).
apply rmul_reg_l with (b * (d * e)); trivial.
rewrite rdiv_simpl; trivial.
rewrite rdistr_r.
apply radd_ext.
-
transitivity ((b * e) * (a / (b * e)) * d); [ ring | now rewrite rdiv_simpl ].
-
transitivity ((d * e) * (c / (d * e)) * b); [ ring | now rewrite rdiv_simpl ].
Qed.
Theorem rdiv5 a b : - (a / b) == - a / b.
Proof.
now rewrite !rdiv_def, ropp_mul_l.
Qed.
Theorem rdiv3b a b c d e : ~ (b * e) == 0 -> ~ (d * e) == 0 -> a / (b*e) - c / (d*e) == (a * d - c * b) / (b * (d * e)).
Proof.
intros H H0.
rewrite !rsub_def, rdiv5, ropp_mul_l.
now apply rdiv2b.
Qed.
Theorem rdiv6 a b : ~ a == 0 -> ~ b == 0 -> / (a / b) == b / a.
Proof.
intros H H0.
assert (Hk : ~ a / b == 0).
{
contradict H.
transitivity (b * (a / b)).
-
now rewrite rdiv_simpl.
-
rewrite H.
apply rmul_0_r.
}
apply rmul_reg_l with (a / b); trivial.
rewrite (rmul_comm (a / b)), rinv_l; trivial.
rewrite !rdiv_def.
transitivity (/ a * a * (/ b * b)); [ | ring ].
now rewrite !rinv_l, rmul_1_l.
Qed.
Theorem rdiv4 a b c d : ~ b == 0 -> ~ d == 0 -> (a / b) * (c / d) == (a * c) / (b * d).
Proof.
intros H H0.
assert (~ b * d == 0) by now apply field_is_integral_domain.
apply rmul_reg_l with (b * d); trivial.
rewrite rdiv_simpl; trivial.
transitivity (b * (a / b) * (d * (c / d))); [ ring | ].
rewrite !rdiv_simpl; trivial.
Qed.
Theorem rdiv4b a b c d e f : ~ b * e == 0 -> ~ d * f == 0 -> ((a * f) / (b * e)) * ((c * e) / (d * f)) == (a * c) / (b * d).
Proof.
intros H H0.
assert (~ b == 0) by (contradict H; rewrite H; ring).
assert (~ e == 0) by (contradict H; rewrite H; ring).
assert (~ d == 0) by (contradict H0; rewrite H0; ring).
assert (~ f == 0) by (contradict H0; rewrite H0; ring).
assert (~ b*d == 0) by now apply field_is_integral_domain.
assert (~ e*f == 0) by now apply field_is_integral_domain.
rewrite rdiv4; trivial.
transitivity ((e * f) * (a * c) / ((e * f) * (b * d))).
-
apply rdiv_ext; ring.
-
rewrite <- rdiv4, rdiv_r_r; trivial.
Qed.
Theorem rdiv7 a b c d : ~ b == 0 -> ~ c == 0 -> ~ d == 0 -> (a / b) / (c / d) == (a * d) / (b * c).
Proof.
intros.
rewrite (rdiv_def (a / b)).
rewrite rdiv6; trivial.
apply rdiv4; trivial.
Qed.
Theorem rdiv7b a b c d e f : ~ b * f == 0 -> ~ c * e == 0 -> ~ d * f == 0 -> ((a * e) / (b * f)) / ((c * e) / (d * f)) == (a * d) / (b * c).
Proof.
intros Hbf Hce Hdf.
assert (~ c==0) by (contradict Hce; rewrite Hce; ring).
assert (~ e==0) by (contradict Hce; rewrite Hce; ring).
assert (~ b==0) by (contradict Hbf; rewrite Hbf; ring).
assert (~ f==0) by (contradict Hbf; rewrite Hbf; ring).
assert (~ b*c==0) by now apply field_is_integral_domain.
assert (~ e*f==0) by now apply field_is_integral_domain.
rewrite rdiv7; trivial.
transitivity ((e * f) * (a * d) / ((e * f) * (b * c))).
-
apply rdiv_ext; ring.
-
now rewrite <- rdiv4, rdiv_r_r.
Qed.
Theorem rinv_nz a : ~ a == 0 -> ~ /a == 0.
Proof.
intros H H0.
apply rI_neq_rO.
rewrite <- (rdiv_r_r H), rdiv_def, H0.
apply rmul_0_r.
Qed.
Theorem rdiv8 a b : ~ b == 0 -> a == 0 -> a / b == 0.
Proof.
intros H H0.
now rewrite rdiv_def, H0, rmul_0_l.
Qed.
Theorem cross_product_eq a b c d : ~ b == 0 -> ~ d == 0 -> a * d == c * b -> a / b == c / d.
Proof.
intros H H0 H1.
transitivity (a / b * (d / d)).
-
now rewrite rdiv_r_r, rmul_1_r.
-
now rewrite rdiv4, H1, (rmul_comm b d), <- rdiv4, rdiv_r_r.
Qed.
(* Results about [pow_pos] and [pow_N] *)
Instance pow_ext : Proper (req ==> eq ==> req) (pow_pos rmul).
Proof.
intros x y H p p' <-.
induction p as [p IH| p IH|];simpl; trivial; now rewrite !IH, ?H.
Qed.
Instance pow_N_ext : Proper (req ==> eq ==> req) (pow_N rI rmul).
Proof.
intros x y H n n' <-.
destruct n; simpl; trivial.
now apply pow_ext.
Qed.
Lemma pow_pos_0 p : pow_pos rmul 0 p == 0.
Proof.
induction p as [p IHp|p IHp|];simpl;trivial; now rewrite !IHp.
Qed.
Lemma pow_pos_1 p : pow_pos rmul 1 p == 1.
Proof.
induction p as [p IHp|p IHp|];simpl;trivial; ring [IHp].
Qed.
Lemma pow_pos_cst c p : pow_pos rmul [c] p == [pow_pos cmul c p].
Proof.
induction p as [p IHp|p IHp|];simpl;trivial; now rewrite !(morph_mul CRmorph), !IHp.
Qed.
Lemma pow_pos_mul_l x y p : pow_pos rmul (x * y) p == pow_pos rmul x p * pow_pos rmul y p.
Proof.
induction p as [p IHp|p IHp|];simpl;trivial; ring [IHp].
Qed.
Lemma pow_pos_add_r x p1 p2 : pow_pos rmul x (p1+p2) == pow_pos rmul x p1 * pow_pos rmul x p2.
Proof.
exact (Ring_theory.pow_pos_add Rsth rmul_ext rmul_assoc x p1 p2).
Qed.
Lemma pow_pos_mul_r x p1 p2 : pow_pos rmul x (p1*p2) == pow_pos rmul (pow_pos rmul x p1) p2.
Proof.
induction p1 as [p1 IHp1|p1 IHp1|];simpl;intros; rewrite ?pow_pos_mul_l, ?pow_pos_add_r; simpl; trivial; ring [IHp1].
Qed.
Lemma pow_pos_nz x p : ~x==0 -> ~pow_pos rmul x p == 0.
Proof.
intros Hx.
induction p;simpl;trivial; repeat (apply field_is_integral_domain; trivial).
Qed.
Lemma pow_pos_div a b p : ~ b == 0 -> pow_pos rmul (a / b) p == pow_pos rmul a p / pow_pos rmul b p.
Proof.
intros H.
induction p as [p IHp|p IHp|]; simpl; trivial.
-
rewrite IHp.
assert (nz := pow_pos_nz p H).
rewrite !rdiv4; trivial.
apply field_is_integral_domain; trivial.
-
rewrite IHp.
assert (nz := pow_pos_nz p H).
rewrite !rdiv4; trivial.
Qed.
(* === is a morphism *)
Instance PEadd_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEadd C).
Proof.
intros ? ? E ? ? E' l.
simpl.
now rewrite E, E'.
Qed.
Instance PEsub_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEsub C).
Proof.
intros ? ? E ? ? E' l.
simpl.
now rewrite E, E'.
Qed.
Instance PEmul_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEmul C).
Proof.
intros ? ? E ? ? E' l.
simpl.
now rewrite E, E'.
Qed.
Instance PEopp_ext : Proper (NPEequiv ==> NPEequiv) (@PEopp C).
Proof.
intros ? ? E l.
simpl.
now rewrite E.
Qed.
Instance PEpow_ext : Proper (NPEequiv ==> eq ==> NPEequiv) (@PEpow C).
Proof.
intros ? ? E ? ? <- l.
simpl.
rewrite !rpow_pow.
apply pow_N_ext; trivial.
Qed.
Lemma PE_1_l (e : PExpr C) : (1 * e === e)%poly.
Proof.
intros l.
simpl.
rewrite phi_1.
apply rmul_1_l.
Qed.
Lemma PE_1_r (e : PExpr C) : (e * 1 === e)%poly.
Proof.
intros l.
simpl.
rewrite phi_1.
apply rmul_1_r.
Qed.
Lemma PEpow_0_r (e : PExpr C) : (e ^ 0 === 1)%poly.
Proof.
intros l.
simpl.
now rewrite !rpow_pow.
Qed.
Lemma PEpow_1_r (e : PExpr C) : (e ^ 1 === e)%poly.
Proof.
intros l.
simpl.
now rewrite !rpow_pow.
Qed.
Lemma PEpow_1_l n : (1 ^ n === 1)%poly.
Proof.
intros l.
simpl.
rewrite rpow_pow.
destruct n; simpl.
-
now rewrite phi_1.
-
now rewrite phi_1, pow_pos_1.
Qed.
Lemma PEpow_add_r (e : PExpr C) n n' : (e ^ (n+n') === e ^ n * e ^ n')%poly.
Proof.
intros l.
simpl.
rewrite !rpow_pow.
destruct n; simpl.
-
rewrite rmul_1_l.
trivial.
-
destruct n'; simpl.
+
rewrite rmul_1_r.
trivial.
+
apply pow_pos_add_r.
Qed.
Lemma PEpow_mul_l (e e' : PExpr C) n : ((e * e') ^ n === e ^ n * e' ^ n)%poly.
Proof.
intros l.
simpl.
rewrite !rpow_pow.
destruct n; simpl; trivial.
-
symmetry; apply rmul_1_l.
-
apply pow_pos_mul_l.
Qed.
Lemma PEpow_mul_r (e : PExpr C) n n' : (e ^ (n * n') === (e ^ n) ^ n')%poly.
Proof.
intros l.
simpl.
rewrite !rpow_pow.
destruct n, n'; simpl; trivial.
-
now rewrite pow_pos_1.
-
apply pow_pos_mul_r.
Qed.
Lemma PEpow_nz l e n : ~ e @ l == 0 -> ~ (e^n) @ l == 0.
Proof.
intros.
simpl.
rewrite rpow_pow.
destruct n; simpl.
-
apply rI_neq_rO.
-
now apply pow_pos_nz.
Qed.
(*************************************************************************** Some equality test ***************************************************************************)
Local Notation "a &&& b" := (if a then b else false) (at level 40, left associativity).
(* equality test *)
Fixpoint PExpr_eq (e e' : PExpr C) {struct e} : bool := match e, e' with | PEc c, PEc c' => ceqb c c' | PEX _ p, PEX _ p' => Pos.eqb p p' | e1 + e2, e1' + e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2' | e1 - e2, e1' - e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2' | e1 * e2, e1' * e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2' | - e, - e' => PExpr_eq e e' | e ^ n, e' ^ n' => N.eqb n n' &&& PExpr_eq e e' | _, _ => false end%poly.
Lemma if_true (a b : bool) : a &&& b = true -> a = true /\ b = true.
Proof.
destruct a, b; split; trivial.
Qed.
Theorem PExpr_eq_semi_ok e e' : PExpr_eq e e' = true -> (e === e')%poly.
Proof.
revert e'; induction e as [| |?|?|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe|? IHe ?]; intro e'; destruct e'; simpl; try discriminate.
-
intros H l.
now apply (morph_eq CRmorph).
-
case Pos.eqb_spec; intros; now subst.
-
intros H; destruct (if_true _ _ H).
now rewrite IHe1, IHe2.
-
intros H; destruct (if_true _ _ H).
now rewrite IHe1, IHe2.
-
intros H; destruct (if_true _ _ H).
now rewrite IHe1, IHe2.
-
intros H.
now rewrite IHe.
-
intros H.
destruct (if_true _ _ H) as [H0 H1].
apply N.eqb_eq in H0.
now rewrite IHe, H0.
Qed.
Lemma PExpr_eq_spec e e' : BoolSpec (e === e')%poly True (PExpr_eq e e').
Proof.
assert (H := PExpr_eq_semi_ok e e').
destruct PExpr_eq; constructor; intros; trivial.
now apply H.
Qed.
(** Smart constructors for polynomial expression, with reduction of constants *)
Definition NPEadd e1 e2 := match e1, e2 with | PEc c1, PEc c2 => PEc (c1 + c2) | PEc c, _ => if (c =? 0)%coef then e2 else e1 + e2 | _, PEc c => if (c =? 0)%coef then e1 else e1 + e2 (* Peut t'on factoriser ici ??? *) | _, _ => (e1 + e2) end%poly.
Infix "++" := NPEadd (at level 60, right associativity).
Theorem NPEadd_ok e1 e2 : (e1 ++ e2 === e1 + e2)%poly.
Proof.
intros l.
destruct e1, e2; simpl; try reflexivity; try (case ceqb_spec); try intro H; try rewrite H; simpl; try apply eq_refl; try (ring [phi_0]).
apply (morph_add CRmorph).
Qed.
Definition NPEsub e1 e2 := match e1, e2 with | PEc c1, PEc c2 => PEc (c1 - c2) | PEc c, _ => if (c =? 0)%coef then - e2 else e1 - e2 | _, PEc c => if (c =? 0)%coef then e1 else e1 - e2 (* Peut-on factoriser ici *) | _, _ => e1 - e2 end%poly.
Infix "--" := NPEsub (at level 50, left associativity).
Theorem NPEsub_ok e1 e2: (e1 -- e2 === e1 - e2)%poly.
Proof.
intros l.
destruct e1, e2; simpl; try reflexivity; try case ceqb_spec; try intro H; try rewrite H; simpl; try rewrite phi_0; try reflexivity; try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r).
apply (morph_sub CRmorph).
Qed.
Definition NPEopp e1 := match e1 with PEc c1 => PEc (- c1) | _ => - e1 end%poly.
Theorem NPEopp_ok e : (NPEopp e === -e)%poly.
Proof.
intros l.
destruct e; simpl; trivial.
apply (morph_opp CRmorph).
Qed.
Definition NPEpow x n := match n with | N0 => 1 | Npos p => if (p =? 1)%positive then x else match x with | PEc c => if (c =? 1)%coef then 1 else if (c =? 0)%coef then 0 else PEc (pow_pos cmul c p) | _ => x ^ n end end%poly.
Infix "^^" := NPEpow (at level 35, right associativity).
Theorem NPEpow_ok e n : (e ^^ n === e ^ n)%poly.
Proof.
intros l.
unfold NPEpow; destruct n.
-
simpl; now rewrite rpow_pow.
-
case Pos.eqb_spec; [intro; subst | intros _].
+
simpl.
now rewrite rpow_pow.
+
destruct e;simpl;trivial.
repeat case ceqb_spec; intros H **; rewrite ?rpow_pow, ?H; simpl.
*
now rewrite phi_1, pow_pos_1.
*
now rewrite phi_0, pow_pos_0.
*
now rewrite pow_pos_cst.
Qed.
Fixpoint NPEmul (x y : PExpr C) {struct x} : PExpr C := match x, y with | PEc c1, PEc c2 => PEc (c1 * c2) | PEc c, _ => if (c =? 1)%coef then y else if (c =? 0)%coef then 0 else x * y | _, PEc c => if (c =? 1)%coef then x else if (c =? 0)%coef then 0 else x * y | e1 ^ n1, e2 ^ n2 => if (n1 =? n2)%N then (NPEmul e1 e2)^^n1 else x * y | _, _ => x * y end%poly.
Infix "**" := NPEmul (at level 40, left associativity).
Theorem NPEmul_ok e1 e2 : (e1 ** e2 === e1 * e2)%poly.
Proof.
intros l.
revert e2; induction e1 as [| |?|?|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe1|? IHe1 n]; intro e2; destruct e2; simpl;try reflexivity; repeat (case ceqb_spec; intro H; try rewrite H; clear H); simpl; try reflexivity; try ring [phi_0 phi_1].
-
apply (morph_mul CRmorph).
-
case N.eqb_spec; [intros <- | reflexivity].
rewrite NPEpow_ok.
simpl.
rewrite !rpow_pow.
rewrite IHe1.
destruct n; simpl; [ ring | apply pow_pos_mul_l ].
Qed.
(* simplification *)
Fixpoint PEsimp (e : PExpr C) : PExpr C := match e with | e1 + e2 => (PEsimp e1) ++ (PEsimp e2) | e1 * e2 => (PEsimp e1) ** (PEsimp e2) | e1 - e2 => (PEsimp e1) -- (PEsimp e2) | - e1 => NPEopp (PEsimp e1) | e1 ^ n1 => (PEsimp e1) ^^ n1 | _ => e end%poly.
Theorem PEsimp_ok e : (PEsimp e === e)%poly.
Proof.
induction e; simpl.
-
reflexivity.
-
reflexivity.
-
intro l; trivial.
-
intro l; trivial.
-
rewrite NPEadd_ok.
now f_equiv.
-
rewrite NPEsub_ok.
now f_equiv.
-
rewrite NPEmul_ok.
now f_equiv.
-
rewrite NPEopp_ok.
now f_equiv.
-
rewrite NPEpow_ok.
now f_equiv.
Qed.
(**************************************************************************** Datastructure ***************************************************************************) (* The input: syntax of a field expression *)
Inductive FExpr : Type := | FEO : FExpr | FEI : FExpr | FEc: C -> FExpr | FEX: positive -> FExpr | FEadd: FExpr -> FExpr -> FExpr | FEsub: FExpr -> FExpr -> FExpr | FEmul: FExpr -> FExpr -> FExpr | FEopp: FExpr -> FExpr | FEinv: FExpr -> FExpr | FEdiv: FExpr -> FExpr -> FExpr | FEpow: FExpr -> N -> FExpr .
Fixpoint FEeval (l : list R) (pe : FExpr) {struct pe} : R := match pe with | FEO => rO | FEI => rI | FEc c => phi c | FEX x => BinList.nth 0 x l | FEadd x y => FEeval l x + FEeval l y | FEsub x y => FEeval l x - FEeval l y | FEmul x y => FEeval l x * FEeval l y | FEopp x => - FEeval l x | FEinv x => / FEeval l x | FEdiv x y => FEeval l x / FEeval l y | FEpow x n => rpow (FEeval l x) (Cp_phi n) end.
Strategy expand [FEeval].
(* The result of the normalisation *)
Record linear : Type := mk_linear { num : PExpr C; denum : PExpr C; condition : list (PExpr C) }.
(*************************************************************************** Semantics and properties of side condition ***************************************************************************)
Fixpoint PCond (l : list R) (le : list (PExpr C)) {struct le} : Prop := match le with | nil => True | e1 :: nil => ~ req (e1 @ l) rO | e1 :: l1 => ~ req (e1 @ l) rO /\ PCond l l1 end.
Theorem PCond_cons l a l1 : PCond l (a :: l1) <-> ~ a @ l == 0 /\ PCond l l1.
Proof.
destruct l1.
-
simpl.
split; [split|destruct 1]; trivial.
-
reflexivity.
Qed.
Theorem PCond_cons_inv_l l a l1 : PCond l (a::l1) -> ~ a @ l == 0.
Proof.
rewrite PCond_cons.
now destruct 1.
Qed.
Theorem PCond_cons_inv_r l a l1 : PCond l (a :: l1) -> PCond l l1.
Proof.
rewrite PCond_cons.
now destruct 1.
Qed.
Theorem PCond_app l l1 l2 : PCond l (l1 ++ l2) <-> PCond l l1 /\ PCond l l2.
Proof.
induction l1 as [|a l1 IHl1].
-
simpl.
split; [split|destruct 1]; trivial.
-
simpl app.
rewrite !PCond_cons, IHl1.
symmetry; apply and_assoc.
Qed.
(* An unsatisfiable condition: issued when a division by zero is detected *)
Definition absurd_PCond := cons 0%poly nil.
Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond.
Proof.
unfold absurd_PCond; simpl.
red; intros ? H.
apply H.
apply phi_0.
Qed.
(*************************************************************************** Normalisation ***************************************************************************)
Definition default_isIn e1 p1 e2 p2 := if PExpr_eq e1 e2 then match Z.pos_sub p1 p2 with | Zpos p => Some (Npos p, 1%poly) | Z0 => Some (N0, 1%poly) | Zneg p => Some (N0, e2 ^^ Npos p) end else None.
Fixpoint isIn e1 p1 e2 p2 {struct e2}: option (N * PExpr C) := match e2 with | e3 * e4 => match isIn e1 p1 e3 p2 with | Some (N0, e5) => Some (N0, e5 ** (e4 ^^ Npos p2)) | Some (Npos p, e5) => match isIn e1 p e4 p2 with | Some (n, e6) => Some (n, e5 ** e6) | None => Some (Npos p, e5 ** (e4 ^^ Npos p2)) end | None => match isIn e1 p1 e4 p2 with | Some (n, e5) => Some (n, (e3 ^^ Npos p2) ** e5) | None => None end end | e3 ^ N0 => None | e3 ^ Npos p3 => isIn e1 p1 e3 (Pos.mul p3 p2) | _ => default_isIn e1 p1 e2 p2 end%poly.
Definition ZtoN z := match z with Zpos p => Npos p | _ => N0 end.
Definition NtoZ n := match n with Npos p => Zpos p | _ => Z0 end.
Lemma Z_pos_sub_gt p q : (p > q)%positive -> Z.pos_sub p q = Zpos (p - q).
Proof.
intros; now apply Z.pos_sub_gt, Pos.gt_lt.
Qed.
Ltac simpl_pos_sub := rewrite ?Z_pos_sub_gt in * by assumption.
Lemma default_isIn_ok e1 e2 p1 p2 : match default_isIn e1 p1 e2 p2 with | Some(n, e3) => let n' := ZtoN (Zpos p1 - NtoZ n) in (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly /\ (Zpos p1 > NtoZ n)%Z | _ => True end.
Proof.
unfold default_isIn.
case PExpr_eq_spec; trivial.
intros EQ.
rewrite Z.pos_sub_spec.
case Pos.compare_spec;intros H; split; try reflexivity.
-
simpl.
now rewrite PE_1_r, H, EQ.
-
rewrite NPEpow_ok, EQ, <- PEpow_add_r.
f_equiv.
simpl.
f_equiv.
now rewrite Pos.add_comm, Pos.sub_add.
-
simpl.
rewrite PE_1_r, EQ.
f_equiv.
rewrite Z.pos_sub_gt by now apply Pos.sub_decr.
simpl.
f_equiv.
rewrite Pos.sub_sub_distr, Pos.add_comm; trivial.
+
rewrite Pos.add_sub; trivial.
+
apply Pos.sub_decr; trivial.
-
simpl.
now apply Z.lt_gt, Pos.sub_decr.
Qed.
Ltac npe_simpl := rewrite ?NPEmul_ok, ?NPEpow_ok, ?PEpow_mul_l.
Ltac npe_ring := intro l; simpl; ring.
Theorem isIn_ok e1 p1 e2 p2 : match isIn e1 p1 e2 p2 with | Some(n, e3) => let n' := ZtoN (Zpos p1 - NtoZ n) in (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly /\ (Zpos p1 > NtoZ n)%Z | _ => True end.
Proof.
Opaque NPEpow.
revert p1 p2.
induction e2 as [| |?|?|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe2_1 ? IHe2_2|? IHe|? IHe2 n]; intros p1 p2; try refine (default_isIn_ok e1 _ p1 p2); simpl isIn.
-
specialize (IHe2_1 p1 p2).
destruct isIn as [([|p],e)|].
+
split; [|reflexivity].
clear IHe2_2.
destruct IHe2_1 as (IH,_).
npe_simpl.
rewrite IH.
npe_ring.
+
specialize (IHe2_2 p p2).
destruct isIn as [([|p'],e')|].
*
destruct IHe2_1 as (IH1,GT1).
destruct IHe2_2 as (IH2,GT2).
split; [|simpl; apply Zgt_trans with (Z.pos p); trivial].
npe_simpl.
rewrite IH1, IH2.
simpl.
simpl_pos_sub.
simpl.
replace (N.pos p1) with (N.pos p + N.pos (p1 - p))%N.
{
rewrite PEpow_add_r; npe_ring.
}
{
simpl.
f_equal.
rewrite Pos.add_comm, Pos.sub_add.
-
trivial.
-
now apply Pos.gt_lt.
}
*
destruct IHe2_1 as (IH1,GT1).
destruct IHe2_2 as (IH2,GT2).
assert (Z.pos p1 > Z.pos p')%Z by (now apply Zgt_trans with (Zpos p)).
split; [|simpl; trivial].
npe_simpl.
rewrite IH1, IH2.
simpl.
simpl_pos_sub.
simpl.
replace (N.pos (p1 - p')) with (N.pos (p1 - p) + N.pos (p - p'))%N.
{
rewrite PEpow_add_r; npe_ring.
}
{
simpl.
f_equal.
rewrite Pos.add_sub_assoc, Pos.sub_add; trivial.
-
now apply Pos.gt_lt.
-
now apply Pos.gt_lt.
}
*
destruct IHe2_1 as (IH,GT).
split; trivial.
npe_simpl.
rewrite IH.
npe_ring.
+
specialize (IHe2_2 p1 p2).
destruct isIn as [(n,e)|]; trivial.
destruct IHe2_2 as (IH,GT).
split; trivial.
set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d.
npe_simpl.
rewrite IH.
npe_ring.
-
destruct n as [|p]; trivial.
specialize (IHe2 p1 (p * p2)%positive).
destruct isIn as [(n,e)|]; trivial.
destruct IHe2 as (IH,GT).
split; trivial.
set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d.
now rewrite <- PEpow_mul_r.
Qed.
Record rsplit : Type := mk_rsplit { rsplit_left : PExpr C; rsplit_common : PExpr C; rsplit_right : PExpr C}.
(* Stupid name clash *)
Notation left := rsplit_left.
Notation right := rsplit_right.
Notation common := rsplit_common.
Fixpoint split_aux e1 p e2 {struct e1}: rsplit := match e1 with | e3 * e4 => let r1 := split_aux e3 p e2 in let r2 := split_aux e4 p (right r1) in mk_rsplit (left r1 ** left r2) (common r1 ** common r2) (right r2) | e3 ^ N0 => mk_rsplit 1 1 e2 | e3 ^ Npos p3 => split_aux e3 (Pos.mul p3 p) e2 | _ => match isIn e1 p e2 1 with | Some (N0,e3) => mk_rsplit 1 (e1 ^^ Npos p) e3 | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3 | None => mk_rsplit (e1 ^^ Npos p) 1 e2 end end%poly.
Lemma split_aux_ok1 e1 p e2 : (let res := match isIn e1 p e2 1 with | Some (N0,e3) => mk_rsplit 1 (e1 ^^ Npos p) e3 | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3 | None => mk_rsplit (e1 ^^ Npos p) 1 e2 end in e1 ^ Npos p === left res * common res /\ e2 === right res * common res)%poly.
Proof.
Opaque NPEpow NPEmul.
intros res.
unfold res;clear res; generalize (isIn_ok e1 p e2 xH).
destruct (isIn e1 p e2 1) as [([|p'],e')|]; simpl.
-
intros (H1,H2); split; npe_simpl.
+
now rewrite PE_1_l.
+
rewrite PEpow_1_r in H1.
rewrite H1.
npe_ring.
-
intros (H1,H2); split; npe_simpl.
+
rewrite <- PEpow_add_r.
f_equiv.
simpl.
f_equal.
rewrite Pos.add_comm, Pos.sub_add; trivial.
now apply Z.gt_lt in H2.
+
rewrite PEpow_1_r in H1.
rewrite H1.
simpl_pos_sub.
simpl.
npe_ring.
-
intros _; split; npe_simpl; now rewrite PE_1_r.
Qed.
Theorem split_aux_ok: forall e1 p e2, (e1 ^ Npos p === left (split_aux e1 p e2) * common (split_aux e1 p e2) /\ e2 === right (split_aux e1 p e2) * common (split_aux e1 p e2))%poly.
Proof.
intro e1;induction e1 as [| |?|?|? IHe1_1 ? IHe1_2|? IHe1_1 ? IHe1_2|e1_1 IHe1_1 ? IHe1_2|? IHe1|? IHe1 n]; intros k e2; try refine (split_aux_ok1 _ k e2);simpl.
-
destruct (IHe1_1 k e2) as (H1,H2).
destruct (IHe1_2 k (right (split_aux e1_1 k e2))) as (H3,H4).
clear IHe1_1 IHe1_2.
npe_simpl; split.
+
rewrite H1, H3.
npe_ring.
+
rewrite H2 at 1.
rewrite H4 at 1.
npe_ring.
-
destruct n; simpl.
+
rewrite PEpow_0_r, PEpow_1_l, !PE_1_r.
now split.
+
rewrite <- PEpow_mul_r.
simpl.
apply IHe1.
Qed.
Definition split e1 e2 := split_aux e1 xH e2.
Theorem split_ok_l e1 e2 : (e1 === left (split e1 e2) * common (split e1 e2))%poly.
Proof.
destruct (split_aux_ok e1 xH e2) as (H,_).
now rewrite <- H, PEpow_1_r.
Qed.
Theorem split_ok_r e1 e2 : (e2 === right (split e1 e2) * common (split e1 e2))%poly.
Proof.
destruct (split_aux_ok e1 xH e2) as (_,H).
trivial.
Qed.
Lemma split_nz_l l e1 e2 : ~ e1 @ l == 0 -> ~ left (split e1 e2) @ l == 0.
Proof.
intros H.
contradict H.
rewrite (split_ok_l e1 e2); simpl.
now rewrite H, rmul_0_l.
Qed.
Lemma split_nz_r l e1 e2 : ~ e2 @ l == 0 -> ~ right (split e1 e2) @ l == 0.
Proof.
intros H.
contradict H.
rewrite (split_ok_r e1 e2); simpl.
now rewrite H, rmul_0_l.
Qed.
Fixpoint Fnorm (e : FExpr) : linear := match e with | FEO => mk_linear 0 1 nil | FEI => mk_linear 1 1 nil | FEc c => mk_linear (PEc c) 1 nil | FEX x => mk_linear (PEX C x) 1 nil | FEadd e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s := split (denum x) (denum y) in mk_linear ((num x ** right s) ++ (num y ** left s)) (left s ** (right s ** common s)) (condition x ++ condition y)%list | FEsub e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s := split (denum x) (denum y) in mk_linear ((num x ** right s) -- (num y ** left s)) (left s ** (right s ** common s)) (condition x ++ condition y)%list | FEmul e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s1 := split (num x) (denum y) in let s2 := split (num y) (denum x) in mk_linear (left s1 ** left s2) (right s2 ** right s1) (condition x ++ condition y)%list | FEopp e1 => let x := Fnorm e1 in mk_linear (NPEopp (num x)) (denum x) (condition x) | FEinv e1 => let x := Fnorm e1 in mk_linear (denum x) (num x) (num x :: condition x) | FEdiv e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s1 := split (num x) (num y) in let s2 := split (denum x) (denum y) in mk_linear (left s1 ** right s2) (left s2 ** right s1) (num y :: condition x ++ condition y)%list | FEpow e1 n => let x := Fnorm e1 in mk_linear ((num x)^^n) ((denum x)^^n) (condition x) end.
(* Example *) (* Eval compute in (Fnorm (FEdiv (FEc cI) (FEadd (FEinv (FEX xH%positive)) (FEinv (FEX (xO xH)%positive))))). *)
Theorem Pcond_Fnorm l e : PCond l (condition (Fnorm e)) -> ~ (denum (Fnorm e))@l == 0.
Proof.
induction e as [| |?|?|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe1 ? IHe2|? IHe|? IHe|? IHe1 ? IHe2|? IHe n]; simpl condition; rewrite ?PCond_cons, ?PCond_app; simpl denum; intros (Hc1,Hc2) || intros Hc; rewrite ?NPEmul_ok.
-
simpl.
rewrite phi_1; exact rI_neq_rO.
-
simpl.
rewrite phi_1; exact rI_neq_rO.
-
simpl; intros.
rewrite phi_1; exact rI_neq_rO.
-
simpl; intros.
rewrite phi_1; exact rI_neq_rO.
-
rewrite <- split_ok_r.
simpl.
apply field_is_integral_domain.
+
apply split_nz_l, IHe1, Hc1.
+
apply IHe2, Hc2.
-
rewrite <- split_ok_r.
simpl.
apply field_is_integral_domain.
+
apply split_nz_l, IHe1, Hc1.
+
apply IHe2, Hc2.
-
simpl.
apply field_is_integral_domain.
+
apply split_nz_r, IHe1, Hc1.
+
apply split_nz_r, IHe2, Hc2.
-
now apply IHe.
-
trivial.
-
destruct Hc2 as (Hc2,_).
simpl.
apply field_is_integral_domain.
+
apply split_nz_l, IHe1, Hc2.
+
apply split_nz_r, Hc1.
-
rewrite NPEpow_ok.
apply PEpow_nz, IHe, Hc.
Qed.
(*************************************************************************** Main theorem ***************************************************************************)
Ltac uneval := repeat match goal with | |- context [ ?x @ ?l * ?y @ ?l ] => change (x@l * y@l) with ((x*y)@l) | |- context [ ?x @ ?l + ?y @ ?l ] => change (x@l + y@l) with ((x+y)@l) end.
Theorem Fnorm_FEeval_PEeval l fe: PCond l (condition (Fnorm fe)) -> FEeval l fe == (num (Fnorm fe)) @ l / (denum (Fnorm fe)) @ l.
Proof.
induction fe as [| |?|?|fe1 IHfe1 fe2 IHfe2|fe1 IHfe1 fe2 IHfe2|fe1 IHfe1 fe2 IHfe2|fe IHfe|fe IHfe|fe1 IHfe1 fe2 IHfe2|fe IHfe n]; simpl condition; rewrite ?PCond_cons, ?PCond_app; simpl; intros (Hc1,Hc2) || intros Hc; try (specialize (IHfe1 Hc1);apply Pcond_Fnorm in Hc1); try (specialize (IHfe2 Hc2);apply Pcond_Fnorm in Hc2); try set (F1 := Fnorm fe1) in *; try set (F2 := Fnorm fe2) in *.
-
now rewrite phi_1, phi_0, rdiv_def.
-
now rewrite phi_1; apply rdiv1.
-
rewrite phi_1; apply rdiv1.
-
rewrite phi_1; apply rdiv1.
-
rewrite NPEadd_ok, !NPEmul_ok.
simpl.
rewrite <- rdiv2b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial.
now f_equiv.
-
rewrite NPEsub_ok, !NPEmul_ok.
simpl.
rewrite <- rdiv3b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial.
now f_equiv.
-
rewrite !NPEmul_ok.
simpl.
rewrite IHfe1, IHfe2.
rewrite (split_ok_l (num F1) (denum F2) l), (split_ok_r (num F1) (denum F2) l), (split_ok_l (num F2) (denum F1) l), (split_ok_r (num F2) (denum F1) l) in *.
apply rdiv4b; trivial.
-
rewrite NPEopp_ok; simpl; rewrite (IHfe Hc); apply rdiv5.
-
rewrite (IHfe Hc2); apply rdiv6; trivial; apply Pcond_Fnorm; trivial.
-
destruct Hc2 as (Hc2,Hc3).
rewrite !NPEmul_ok.
simpl.
assert (U1 := split_ok_l (num F1) (num F2) l).
assert (U2 := split_ok_r (num F1) (num F2) l).
assert (U3 := split_ok_l (denum F1) (denum F2) l).
assert (U4 := split_ok_r (denum F1) (denum F2) l).
rewrite (IHfe1 Hc2), (IHfe2 Hc3), U1, U2, U3, U4.
simpl in U2, U3, U4.
apply rdiv7b; rewrite <- ?U2, <- ?U3, <- ?U4; try apply Pcond_Fnorm; trivial.
-
rewrite !NPEpow_ok.
simpl.
rewrite !rpow_pow, (IHfe Hc).
destruct n; simpl.
+
apply rdiv1.
+
apply pow_pos_div.
apply Pcond_Fnorm; trivial.
Qed.
Theorem Fnorm_crossproduct l fe1 fe2 : let nfe1 := Fnorm fe1 in let nfe2 := Fnorm fe2 in (num nfe1 * denum nfe2) @ l == (num nfe2 * denum nfe1) @ l -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2.
Proof.
simpl.
rewrite PCond_app.
intros Hcrossprod (Hc1,Hc2).
rewrite !Fnorm_FEeval_PEeval; trivial.
apply cross_product_eq; trivial; apply Pcond_Fnorm; trivial.
Qed.
(* Correctness lemmas of reflexive tactics *)
Notation Ninterp_PElist := (interp_PElist rO rI radd rmul rsub ropp req phi Cp_phi rpow).
Notation Nmk_monpol_list := (mk_monpol_list cO cI cadd cmul csub copp ceqb cdiv).
Theorem Fnorm_ok: forall n l lpe fe, Ninterp_PElist l lpe -> Peq ceqb (Nnorm n (Nmk_monpol_list lpe) (num (Fnorm fe))) (Pc cO) = true -> PCond l (condition (Fnorm fe)) -> FEeval l fe == 0.
Proof.
intros n l lpe fe Hlpe H H1.
rewrite (Fnorm_FEeval_PEeval l fe H1).
apply rdiv8.
-
apply Pcond_Fnorm; trivial.
-
transitivity (0@l); trivial.
rewrite (norm_subst_ok Rsth Reqe ARth CRmorph pow_th cdiv_th n l lpe); trivial.
change (0 @ l) with (Pphi 0 radd rmul phi l (Pc cO)).
apply (Peq_ok Rsth Reqe CRmorph); trivial.
Qed.
Notation ring_rw_correct := (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec).
Notation ring_rw_pow_correct := (ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec).
Notation ring_correct := (ring_correct Rsth Reqe ARth CRmorph pow_th cdiv_th).
(* simplify a field expression into a fraction *)
Definition display_linear l num den := let lnum := NPphi_dev l num in match den with | Pc c => if ceqb c cI then lnum else lnum / NPphi_dev l den | _ => lnum / NPphi_dev l den end.
Definition display_pow_linear l num den := let lnum := NPphi_pow l num in match den with | Pc c => if ceqb c cI then lnum else lnum / NPphi_pow l den | _ => lnum / NPphi_pow l den end.
Theorem Field_rw_correct n lpe l : Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall fe nfe, Fnorm fe = nfe -> PCond l (condition nfe) -> FEeval l fe == display_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
Proof.
intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
rewrite (Fnorm_FEeval_PEeval _ _ H).
unfold display_linear.
destruct (Nnorm _ _ _) as [c | | ] eqn: HN; try ( apply rdiv_ext; eapply ring_rw_correct; eauto).
destruct (ceqb_spec c cI) as [H0|].
-
set (nnum := NPphi_dev _ _).
apply eq_trans with (nnum / NPphi_dev l (Pc c)).
+
apply rdiv_ext; eapply ring_rw_correct; eauto.
+
rewrite Pphi_dev_ok; try eassumption.
now simpl; rewrite H0, phi_1, <- rdiv1.
-
apply rdiv_ext; eapply ring_rw_correct; eauto.
Qed.
Theorem Field_rw_pow_correct n lpe l : Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall fe nfe, Fnorm fe = nfe -> PCond l (condition nfe) -> FEeval l fe == display_pow_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
Proof.
intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
rewrite (Fnorm_FEeval_PEeval _ _ H).
unfold display_pow_linear.
destruct (Nnorm _ _ _) as [c | | ] eqn: HN; try ( apply rdiv_ext; eapply ring_rw_pow_correct; eauto).
destruct (ceqb_spec c cI) as [H0|].
-
set (nnum := NPphi_pow _ _).
apply eq_trans with (nnum / NPphi_pow l (Pc c)).
+
apply rdiv_ext; eapply ring_rw_pow_correct; eauto.
+
rewrite Pphi_pow_ok; try eassumption.
now simpl; rewrite H0, phi_1, <- rdiv1.
-
apply rdiv_ext; eapply ring_rw_pow_correct; eauto.
Qed.
Theorem Field_correct n l lpe fe1 fe2 : Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> Peq ceqb (Nnorm n lmp (num nfe1 * denum nfe2)) (Nnorm n lmp (num nfe2 * denum nfe1)) = true -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2.
Proof.
intros Hlpe lmp eq_lmp nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2 lmp.
apply Fnorm_crossproduct; trivial.
eapply ring_correct; eauto.
Qed.
(* simplify a field equation : generate the crossproduct and simplify polynomials *) (** This allows rewriting modulo the simplification of PEeval on PMul *)
Declare Equivalent Keys PEeval rmul.
Theorem Field_simplify_eq_correct : forall n l lpe fe1 fe2, Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> NPphi_dev l (Nnorm n lmp (num nfe1 * right den)) == NPphi_dev l (Nnorm n lmp (num nfe2 * left den)) -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2.
Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond.
apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial.
simpl.
rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3.
rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3.
simpl.
rewrite !rmul_assoc.
apply rmul_ext; trivial.
rewrite (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl), (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl).
rewrite Hlmp.
apply Hcrossprod.
Qed.
Theorem Field_simplify_eq_pow_correct : forall n l lpe fe1 fe2, Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> NPphi_pow l (Nnorm n lmp (num nfe1 * right den)) == NPphi_pow l (Nnorm n lmp (num nfe2 * left den)) -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2.
Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond.
apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial.
simpl.
rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3.
rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3.
simpl.
rewrite !rmul_assoc.
apply rmul_ext; trivial.
rewrite (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl), (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl).
rewrite Hlmp.
apply Hcrossprod.
Qed.
Theorem Field_simplify_aux_ok l fe1 fe2 den : FEeval l fe1 == FEeval l fe2 -> split (denum (Fnorm fe1)) (denum (Fnorm fe2)) = den -> PCond l (condition (Fnorm fe1) ++ condition (Fnorm fe2)) -> (num (Fnorm fe1) * right den) @ l == (num (Fnorm fe2) * left den) @ l.
Proof.
rewrite PCond_app; intros Hfe Hden (Hc1,Hc2); simpl.
assert (Hc1' := Pcond_Fnorm _ _ Hc1).
assert (Hc2' := Pcond_Fnorm _ _ Hc2).
set (N1 := num (Fnorm fe1)) in *.
set (N2 := num (Fnorm fe2)) in *.
set (D1 := denum (Fnorm fe1)) in *.
set (D2 := denum (Fnorm fe2)) in *.
assert (~ (common den) @ l == 0).
{
intro H.
apply Hc1'.
rewrite (split_ok_l D1 D2 l).
rewrite Hden.
simpl.
ring [H].
}
apply (@rmul_reg_l ((common den) @ l)); trivial.
rewrite !(rmul_comm ((common den) @ l)), <- !rmul_assoc.
change (N1@l * (right den * common den) @ l == N2@l * (left den * common den) @ l).
rewrite <- Hden, <- split_ok_l, <- split_ok_r.
apply (@rmul_reg_l (/ D2@l)).
{
apply rinv_nz; trivial.
}
rewrite (rmul_comm (/ D2 @ l)), <- !rmul_assoc.
rewrite <- rdiv_def, rdiv_r_r, rmul_1_r by trivial.
apply (@rmul_reg_l (/ (D1@l))).
{
apply rinv_nz; trivial.
}
rewrite !(rmul_comm (/ D1@l)), <- !rmul_assoc.
rewrite <- !rdiv_def, rdiv_r_r, rmul_1_r by trivial.
rewrite (rmul_comm (/ D2@l)), <- rdiv_def.
unfold N1,N2,D1,D2; rewrite <- !Fnorm_FEeval_PEeval; trivial.
Qed.
Theorem Field_simplify_eq_pow_in_correct : forall n l lpe fe1 fe2, Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> forall np1, Nnorm n lmp (num nfe1 * right den) = np1 -> forall np2, Nnorm n lmp (num nfe2 * left den) = np2 -> FEeval l fe1 == FEeval l fe2 -> PCond l (condition nfe1 ++ condition nfe2) -> NPphi_pow l np1 == NPphi_pow l np2.
Proof.
intros n l lpe fe1 fe2 ? lmp ? nfe1 ? nfe2 ? den ? np1 ? np2 ? ? ?.
subst nfe1 nfe2 lmp np1 np2.
rewrite !(Pphi_pow_ok Rsth Reqe ARth CRmorph pow_th get_sign_spec).
repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial).
simpl.
apply Field_simplify_aux_ok; trivial.
Qed.
Theorem Field_simplify_eq_in_correct : forall n l lpe fe1 fe2, Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> forall np1, Nnorm n lmp (num nfe1 * right den) = np1 -> forall np2, Nnorm n lmp (num nfe2 * left den) = np2 -> FEeval l fe1 == FEeval l fe2 -> PCond l (condition nfe1 ++ condition nfe2) -> NPphi_dev l np1 == NPphi_dev l np2.
Proof.
intros n l lpe fe1 fe2 ? lmp ? nfe1 ? nfe2 ? den ? np1 ? np2 ? ? ?.
subst nfe1 nfe2 lmp np1 np2.
rewrite !(Pphi_dev_ok Rsth Reqe ARth CRmorph get_sign_spec).
repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial).
apply Field_simplify_aux_ok; trivial.
Qed.
Section Fcons_impl.
Variable Fcons : PExpr C -> list (PExpr C) -> list (PExpr C).
Hypothesis PCond_fcons_inv : forall l a l1, PCond l (Fcons a l1) -> ~ a @ l == 0 /\ PCond l l1.
Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) := match l with | nil => m | cons a l1 => Fcons a (Fapp l1 m) end.
Lemma fcons_ok : forall l l1, (forall lock, lock = PCond l -> lock (Fapp l1 nil)) -> PCond l l1.
Proof.
intros l l1 h1; assert (H := h1 (PCond l) (refl_equal _));clear h1.
induction l1 as [|a l1 IHl1]; simpl; intros.
-
trivial.
-
elim PCond_fcons_inv with (1 := H); intros.
destruct l1; trivial.
split; trivial.
apply IHl1; trivial.
Qed.
End Fcons_impl.
Section Fcons_simpl.
(* Some general simpifications of the condition: eliminate duplicates, split multiplications *)
Fixpoint Fcons (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) := match l with nil => cons e nil | cons a l1 => if PExpr_eq e a then l else cons a (Fcons e l1) end.
Theorem PFcons_fcons_inv: forall l a l1, PCond l (Fcons a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
intros l a l1; induction l1 as [|e l1 IHl1]; simpl Fcons.
-
simpl; now split.
-
case PExpr_eq_spec; intros H; rewrite !PCond_cons; intros (H1,H2); repeat split; trivial.
+
now rewrite H.
+
now apply IHl1.
+
now apply IHl1.
Qed.
(* equality of normal forms rather than syntactic equality *)
Fixpoint Fcons0 (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) := match l with nil => cons e nil | cons a l1 => if Peq ceqb (Nnorm O nil e) (Nnorm O nil a) then l else cons a (Fcons0 e l1) end.
Theorem PFcons0_fcons_inv: forall l a l1, PCond l (Fcons0 a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
intros l a l1; induction l1 as [|e l1 IHl1]; simpl Fcons0.
-
simpl; now split.
-
generalize (ring_correct O l nil a e).
lazy zeta; simpl Peq.
case Peq; intros H; rewrite !PCond_cons; intros (H1,H2); repeat split; trivial.
+
now rewrite H.
+
now apply IHl1.
+
now apply IHl1.
Qed.
(* split factorized denominators *)
Fixpoint Fcons00 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := match e with PEmul e1 e2 => Fcons00 e1 (Fcons00 e2 l) | PEpow e1 _ => Fcons00 e1 l | _ => Fcons0 e l end.
Theorem PFcons00_fcons_inv: forall l a l1, PCond l (Fcons00 a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail).
-
intros p H p0 H0 l1 H1.
simpl in H1.
destruct (H _ H1) as (H2,H3).
destruct (H0 _ H3) as (H4,H5).
split; trivial.
simpl.
apply field_is_integral_domain; trivial.
-
intros ? H ? ? H0.
destruct (H _ H0).
split; trivial.
apply PEpow_nz; trivial.
Qed.
Definition Pcond_simpl_gen := fcons_ok _ PFcons00_fcons_inv.
(* Specific case when the equality test of coefs is complete w.r.t. the field equality: non-zero coefs can be eliminated, and opposite can be simplified (if -1 <> 0) *)
Hypothesis ceqb_complete : forall c1 c2, [c1] == [c2] -> ceqb c1 c2 = true.
Lemma ceqb_spec' c1 c2 : Bool.reflect ([c1] == [c2]) (ceqb c1 c2).
Proof.
assert (H := morph_eq CRmorph c1 c2).
assert (H' := @ceqb_complete c1 c2).
destruct (ceqb c1 c2); constructor.
-
now apply H.
-
intro E.
specialize (H' E).
discriminate.
Qed.
Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := match e with | PEmul e1 e2 => Fcons1 e1 (Fcons1 e2 l) | PEpow e _ => Fcons1 e l | PEopp e => if (-(1) =? 0)%coef then absurd_PCond else Fcons1 e l | PEc c => if (c =? 0)%coef then absurd_PCond else l | _ => Fcons0 e l end.
Theorem PFcons1_fcons_inv: forall l a l1, PCond l (Fcons1 a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail).
-
simpl; intros c l1.
case ceqb_spec'; intros H H0.
+
elim (@absurd_PCond_bottom l H0).
+
split; trivial.
rewrite <- phi_0; trivial.
-
intros p H p0 H0 l1 H1.
simpl in H1.
destruct (H _ H1) as (H2,H3).
destruct (H0 _ H3) as (H4,H5).
split; trivial.
simpl.
apply field_is_integral_domain; trivial.
-
simpl; intros p H l1.
case ceqb_spec'; intros H0 H1.
+
elim (@absurd_PCond_bottom l H1).
+
destruct (H _ H1).
split; trivial.
apply ropp_neq_0; trivial.
rewrite (morph_opp CRmorph), phi_0, phi_1 in H0.
trivial.
-
intros ? H ? ? H0.
destruct (H _ H0);split;trivial.
apply PEpow_nz; trivial.
Qed.
Definition Fcons2 e l := Fcons1 (PEsimp e) l.
Theorem PFcons2_fcons_inv: forall l a l1, PCond l (Fcons2 a l1) -> ~ a @ l == 0 /\ PCond l l1.
Proof.
unfold Fcons2; intros l a l1 H; split; case (PFcons1_fcons_inv l (PEsimp a) l1); trivial.
intros H1 H2 H3; case H1.
transitivity (a@l); trivial.
apply PEsimp_ok.
Qed.
Definition Pcond_simpl_complete := fcons_ok _ PFcons2_fcons_inv.
End Fcons_simpl.
End AlmostField.
Section FieldAndSemiField.
Record field_theory : Prop := mk_field { F_R : ring_theory rO rI radd rmul rsub ropp req; F_1_neq_0 : ~ 1 == 0; Fdiv_def : forall p q, p / q == p * / q; Finv_l : forall p, ~ p == 0 -> / p * p == 1 }.
Definition F2AF f := mk_afield (Rth_ARth Rsth Reqe (F_R f)) (F_1_neq_0 f) (Fdiv_def f) (Finv_l f).
Record semi_field_theory : Prop := mk_sfield { SF_SR : semi_ring_theory rO rI radd rmul req; SF_1_neq_0 : ~ 1 == 0; SFdiv_def : forall p q, p / q == p * / q; SFinv_l : forall p, ~ p == 0 -> / p * p == 1 }.
End FieldAndSemiField.
End MakeFieldPol.
Definition SF2AF R (rO rI:R) radd rmul rdiv rinv req Rsth (sf:semi_field_theory rO rI radd rmul rdiv rinv req) := mk_afield _ _ (SRth_ARth Rsth (SF_SR sf)) (SF_1_neq_0 sf) (SFdiv_def sf) (SFinv_l sf).
Section Complete.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable (rdiv : R -> R -> R) (rinv : R -> R).
Variable req : R -> R -> Prop.
Notation "0" := rO.
Notation "1" := rI.
Notation "x + y" := (radd x y).
Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y).
Notation "- x" := (ropp x).
Notation "x / y " := (rdiv x y).
Notation "/ x" := (rinv x).
Notation "x == y" := (req x y) (at level 70, no associativity).
Variable Rsth : Setoid_Theory R req.
Add Parametric Relation : R req reflexivity proved by (@Equivalence_Reflexive _ _ Rsth) symmetry proved by (@Equivalence_Symmetric _ _ Rsth) transitivity proved by (@Equivalence_Transitive _ _ Rsth) as R_setoid3.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Add Morphism radd with signature (req ==> req ==> req) as radd_ext3.
Proof.
exact (Radd_ext Reqe).
Qed.
Add Morphism rmul with signature (req ==> req ==> req) as rmul_ext3.
Proof.
exact (Rmul_ext Reqe).
Qed.
Add Morphism ropp with signature (req ==> req) as ropp_ext3.
Proof.
exact (Ropp_ext Reqe).
Qed.
Section AlmostField.
Variable AFth : almost_field_theory rO rI radd rmul rsub ropp rdiv rinv req.
Let ARth := (AF_AR AFth).
Let rI_neq_rO := (AF_1_neq_0 AFth).
Let rdiv_def := (AFdiv_def AFth).
Let rinv_l := (AFinv_l AFth).
Hypothesis S_inj : forall x y, 1+x==1+y -> x==y.
Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
Lemma add_inj_r p x y : gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y.
Proof.
elim p using Pos.peano_ind; simpl; [intros H|intros ? H ?].
-
apply S_inj; trivial.
-
apply H.
apply S_inj.
rewrite !(ARadd_assoc ARth).
rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial.
Qed.
Lemma gen_phiPOS_inj x y : gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y -> x = y.
Proof.
rewrite <- !(same_gen Rsth Reqe ARth).
case (Pos.compare_spec x y).
-
intros.
trivial.
-
intros.
elim gen_phiPOS_not_0 with (y - x)%positive.
apply add_inj_r with x.
symmetry.
rewrite (ARadd_0_r Rsth ARth).
rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth).
now rewrite Pos.add_comm, Pos.sub_add.
-
intros.
elim gen_phiPOS_not_0 with (x - y)%positive.
apply add_inj_r with y.
rewrite (ARadd_0_r Rsth ARth).
rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth).
now rewrite Pos.add_comm, Pos.sub_add.
Qed.
Lemma gen_phiN_inj x y : gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> x = y.
Proof.
destruct x as [|p]; destruct y as [|p']; simpl; intros H; trivial.
-
elim gen_phiPOS_not_0 with p'.
symmetry .
rewrite (same_gen Rsth Reqe ARth); trivial.
-
elim gen_phiPOS_not_0 with p.
rewrite (same_gen Rsth Reqe ARth); trivial.
-
rewrite gen_phiPOS_inj with (1 := H); trivial.
Qed.
Lemma gen_phiN_complete x y : gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> N.eqb x y = true.
Proof.
intros.
now apply N.eqb_eq, gen_phiN_inj.
Qed.
End AlmostField.
Section Field.
Variable Fth : field_theory rO rI radd rmul rsub ropp rdiv rinv req.
Let Rth := (F_R Fth).
Let rI_neq_rO := (F_1_neq_0 Fth).
Let rdiv_def := (Fdiv_def Fth).
Let rinv_l := (Finv_l Fth).
Let AFth := F2AF Rsth Reqe Fth.
Let ARth := Rth_ARth Rsth Reqe Rth.
Lemma ring_S_inj x y : 1+x==1+y -> x==y.
Proof.
intros.
rewrite <- (ARadd_0_l ARth x), <- (ARadd_0_l ARth y).
rewrite <- (Ropp_def Rth 1), (ARadd_comm ARth 1).
rewrite <- !(ARadd_assoc ARth).
now apply (Radd_ext Reqe).
Qed.
Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
Let gen_phiPOS_inject := gen_phiPOS_inj AFth ring_S_inj gen_phiPOS_not_0.
Lemma gen_phiPOS_discr_sgn x y : ~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y.
Proof.
red; intros.
apply gen_phiPOS_not_0 with (y + x)%positive.
rewrite (ARgen_phiPOS_add Rsth Reqe ARth).
transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y).
-
apply (Radd_ext Reqe); trivial.
+
reflexivity.
+
rewrite (same_gen Rsth Reqe ARth).
rewrite (same_gen Rsth Reqe ARth).
trivial.
-
apply (Ropp_def Rth).
Qed.
Lemma gen_phiZ_inj x y : gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> x = y.
Proof.
destruct x as [|p|p]; destruct y as [|p'|p']; simpl; intros H.
-
trivial.
-
elim gen_phiPOS_not_0 with p'.
rewrite (same_gen Rsth Reqe ARth).
symmetry ; trivial.
-
elim gen_phiPOS_not_0 with p'.
rewrite (same_gen Rsth Reqe ARth).
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p')).
rewrite <- H.
apply (ARopp_zero Rsth Reqe ARth).
-
elim gen_phiPOS_not_0 with p.
rewrite (same_gen Rsth Reqe ARth).
trivial.
-
rewrite gen_phiPOS_inject with (1 := H); trivial.
-
elim gen_phiPOS_discr_sgn with (1 := H).
-
elim gen_phiPOS_not_0 with p.
rewrite (same_gen Rsth Reqe ARth).
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
rewrite H.
apply (ARopp_zero Rsth Reqe ARth).
-
elim gen_phiPOS_discr_sgn with p' p.
symmetry ; trivial.
-
replace p' with p; trivial.
apply gen_phiPOS_inject.
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p')).
rewrite H; trivial.
reflexivity.
Qed.
Lemma gen_phiZ_complete x y : gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> Zeq_bool x y = true.
Proof.
intros.
replace y with x.
-
unfold Zeq_bool.
rewrite Z.compare_refl; trivial.
-
apply gen_phiZ_inj; trivial.
Qed.
End Field.
End Complete.
Arguments FEO {C}.
Arguments FEI {C}.