Timings for Tauto.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./micromega/Tauto.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./micromega/Tauto.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-20019 *) (* *) (************************************************************************)
Require Import List.
Require Import Refl.
Require Import Bool.
Require Import Relation_Definitions Setoid.
Set Implicit Arguments.
(** Formulae are either interpreted over Prop or bool. *)
Inductive kind : Type := |isProp |isBool.
Register isProp as micromega.kind.isProp.
Register isBool as micromega.kind.isBool.
Inductive Trace (A : Type) := | null : Trace A | push : A -> Trace A -> Trace A | merge : Trace A -> Trace A -> Trace A .
Section S.
Context {TA : Type}.
(* type of interpreted atoms *)
Context {TX : kind -> Type}.
(* type of uninterpreted terms (Prop) *)
Context {AA : Type}.
(* type of annotations for atoms *)
Context {AF : Type}.
(* type of formulae identifiers *)
Inductive GFormula : kind -> Type := | TT : forall (k: kind), GFormula k | FF : forall (k: kind), GFormula k | X : forall (k: kind), TX k -> GFormula k | A : forall (k: kind), TA -> AA -> GFormula k | AND : forall (k: kind), GFormula k -> GFormula k -> GFormula k | OR : forall (k: kind), GFormula k -> GFormula k -> GFormula k | NOT : forall (k: kind), GFormula k -> GFormula k | IMPL : forall (k: kind), GFormula k -> option AF -> GFormula k -> GFormula k | IFF : forall (k: kind), GFormula k -> GFormula k -> GFormula k | EQ : GFormula isBool -> GFormula isBool -> GFormula isProp.
Register TT as micromega.GFormula.TT.
Register FF as micromega.GFormula.FF.
Register X as micromega.GFormula.X.
Register A as micromega.GFormula.A.
Register AND as micromega.GFormula.AND.
Register OR as micromega.GFormula.OR.
Register NOT as micromega.GFormula.NOT.
Register IMPL as micromega.GFormula.IMPL.
Register IFF as micromega.GFormula.IFF.
Register EQ as micromega.GFormula.EQ.
Section MAPX.
Variable F : forall k, TX k -> TX k.
Fixpoint mapX (k:kind) (f : GFormula k) : GFormula k := match f with | TT k => TT k | FF k => FF k | X x => X (F x) | A k a an => A k a an | AND f1 f2 => AND (mapX f1) (mapX f2) | OR f1 f2 => OR (mapX f1) (mapX f2) | NOT f => NOT (mapX f) | IMPL f1 o f2 => IMPL (mapX f1) o (mapX f2) | IFF f1 f2 => IFF (mapX f1) (mapX f2) | EQ f1 f2 => EQ (mapX f1) (mapX f2) end.
End MAPX.
Section FOLDANNOT.
Variable ACC : Type.
Variable F : ACC -> AA -> ACC.
Fixpoint foldA (k: kind) (f : GFormula k) (acc : ACC) : ACC := match f with | TT _ => acc | FF _ => acc | X x => acc | A _ a an => F acc an | AND f1 f2 | OR f1 f2 | IFF f1 f2 | IMPL f1 _ f2 | EQ f1 f2 => foldA f1 (foldA f2 acc) | NOT f => foldA f acc end.
End FOLDANNOT.
Definition cons_id (id : option AF) (l : list AF) := match id with | None => l | Some id => id :: l end.
Fixpoint ids_of_formula (k: kind) (f:GFormula k) := match f with | IMPL f id f' => cons_id id (ids_of_formula f') | _ => nil end.
Fixpoint collect_annot (k: kind) (f : GFormula k) : list AA := match f with | TT _ | FF _ | X _ => nil | A _ _ a => a ::nil | AND f1 f2 | OR f1 f2 | IFF f1 f2 | EQ f1 f2 | IMPL f1 _ f2 => collect_annot f1 ++ collect_annot f2 | NOT f => collect_annot f end.
Definition rtyp (k: kind) : Type := if k then Prop else bool.
Variable ex : forall (k: kind), TX k -> rtyp k.
(* [ex] will be the identity *)
Section EVAL.
Variable ea : forall (k: kind), TA -> rtyp k.
Definition eTT (k: kind) : rtyp k := if k as k' return rtyp k' then True else true.
Definition eFF (k: kind) : rtyp k := if k as k' return rtyp k' then False else false.
Definition eAND (k: kind) : rtyp k -> rtyp k -> rtyp k := if k as k' return rtyp k' -> rtyp k' -> rtyp k' then and else andb.
Definition eOR (k: kind) : rtyp k -> rtyp k -> rtyp k := if k as k' return rtyp k' -> rtyp k' -> rtyp k' then or else orb.
Definition eIMPL (k: kind) : rtyp k -> rtyp k -> rtyp k := if k as k' return rtyp k' -> rtyp k' -> rtyp k' then (fun x y => x -> y) else implb.
Definition eIFF (k: kind) : rtyp k -> rtyp k -> rtyp k := if k as k' return rtyp k' -> rtyp k' -> rtyp k' then iff else eqb.
Definition eNOT (k: kind) : rtyp k -> rtyp k := if k as k' return rtyp k' -> rtyp k' then not else negb.
Fixpoint eval_f (k: kind) (f:GFormula k) {struct f}: rtyp k := match f in GFormula k' return rtyp k' with | TT tk => eTT tk | FF tk => eFF tk | A k a _ => ea k a | X p => ex p | @AND k e1 e2 => eAND k (eval_f e1) (eval_f e2) | @OR k e1 e2 => eOR k (eval_f e1) (eval_f e2) | @NOT k e => eNOT k (eval_f e) | @IMPL k f1 _ f2 => eIMPL k (eval_f f1) (eval_f f2) | @IFF k f1 f2 => eIFF k (eval_f f1) (eval_f f2) | EQ f1 f2 => (eval_f f1) = (eval_f f2) end.
Lemma eval_f_rew : forall k (f:GFormula k), eval_f f = match f in GFormula k' return rtyp k' with | TT tk => eTT tk | FF tk => eFF tk | A k a _ => ea k a | X p => ex p | @AND k e1 e2 => eAND k (eval_f e1) (eval_f e2) | @OR k e1 e2 => eOR k (eval_f e1) (eval_f e2) | @NOT k e => eNOT k (eval_f e) | @IMPL k f1 _ f2 => eIMPL k (eval_f f1) (eval_f f2) | @IFF k f1 f2 => eIFF k (eval_f f1) (eval_f f2) | EQ f1 f2 => (eval_f f1) = (eval_f f2) end.
Proof.
intros k f; destruct f ; reflexivity.
Qed.
End EVAL.
Definition hold (k: kind) : rtyp k -> Prop := if k as k0 return (rtyp k0 -> Prop) then fun x => x else is_true.
Definition eiff (k: kind) : rtyp k -> rtyp k -> Prop := if k as k' return rtyp k' -> rtyp k' -> Prop then iff else @eq bool.
Lemma eiff_refl (k: kind) (x : rtyp k) : eiff k x x.
Proof.
destruct k ; simpl; tauto.
Qed.
Lemma eiff_sym k (x y : rtyp k) : eiff k x y -> eiff k y x.
Proof.
destruct k ; simpl; intros ; intuition.
Qed.
Lemma eiff_trans k (x y z : rtyp k) : eiff k x y -> eiff k y z -> eiff k x z.
Proof.
destruct k ; simpl; intros ; intuition congruence.
Qed.
Lemma hold_eiff (k: kind) (x y : rtyp k) : (hold k x <-> hold k y) <-> eiff k x y.
Proof.
destruct k ; simpl.
-
tauto.
-
unfold is_true.
destruct x,y ; intuition congruence.
Qed.
Instance eiff_eq (k: kind) : Equivalence (eiff k).
Proof.
constructor.
-
exact (eiff_refl k).
-
exact (eiff_sym k).
-
exact (eiff_trans k).
Qed.
Add Parametric Morphism (k: kind) : (@eAND k) with signature eiff k ==> eiff k ==> eiff k as eAnd_morph.
Proof.
intros.
destruct k ; simpl in *; intuition congruence.
Qed.
Add Parametric Morphism (k: kind) : (@eOR k) with signature eiff k ==> eiff k ==> eiff k as eOR_morph.
Proof.
intros.
destruct k ; simpl in *; intuition congruence.
Qed.
Add Parametric Morphism (k: kind) : (@eIMPL k) with signature eiff k ==> eiff k ==> eiff k as eIMPL_morph.
Proof.
intros.
destruct k ; simpl in *; intuition congruence.
Qed.
Add Parametric Morphism (k: kind) : (@eIFF k) with signature eiff k ==> eiff k ==> eiff k as eIFF_morph.
Proof.
intros.
destruct k ; simpl in *; intuition congruence.
Qed.
Add Parametric Morphism (k: kind) : (@eNOT k) with signature eiff k ==> eiff k as eNOT_morph.
Proof.
intros.
destruct k ; simpl in *; intuition congruence.
Qed.
Lemma eval_f_morph : forall (ev ev' : forall (k: kind), TA -> rtyp k), (forall k a, eiff k (ev k a) (ev' k a)) -> forall (k: kind)(f : GFormula k), (eiff k (eval_f ev f) (eval_f ev' f)).
Proof.
intros ev ev' H k f; induction f as [| | | |? ? IHf1 ? IHf2|? ? IHf1 ? IHf2|? ? IHf |? ? IHf1 ? ? IHf2|? ? IHf1 ? IHf2|]; simpl.
-
reflexivity.
-
reflexivity.
-
reflexivity.
-
apply H.
-
rewrite IHf1.
rewrite IHf2.
reflexivity.
-
rewrite IHf1.
rewrite IHf2.
reflexivity.
-
rewrite IHf.
reflexivity.
-
rewrite IHf1.
rewrite IHf2.
reflexivity.
-
rewrite IHf1.
rewrite IHf2.
reflexivity.
-
simpl in *.
intuition congruence.
Qed.
End S.
(** Typical boolean formulae *)
Definition eKind (k: kind) := if k then Prop else bool.
Register eKind as micromega.eKind.
Definition BFormula (A : Type) := @GFormula A eKind unit unit.
Register BFormula as micromega.BFormula.type.
Section MAPATOMS.
Context {TA TA':Type}.
Context {TX : kind -> Type}.
Context {AA : Type}.
Context {AF : Type}.
Fixpoint map_bformula (k: kind)(fct : TA -> TA') (f : @GFormula TA TX AA AF k) : @GFormula TA' TX AA AF k:= match f with | TT k => TT k | FF k => FF k | X k p => X k p | A k a t => A k (fct a) t | AND f1 f2 => AND (map_bformula fct f1) (map_bformula fct f2) | OR f1 f2 => OR (map_bformula fct f1) (map_bformula fct f2) | NOT f => NOT (map_bformula fct f) | IMPL f1 a f2 => IMPL (map_bformula fct f1) a (map_bformula fct f2) | IFF f1 f2 => IFF (map_bformula fct f1) (map_bformula fct f2) | EQ f1 f2 => EQ (map_bformula fct f1) (map_bformula fct f2) end.
End MAPATOMS.
Lemma map_simpl : forall A B f l, @map A B f l = match l with | nil => nil | a :: l=> (f a) :: (@map A B f l) end.
Proof.
intros A B f l; destruct l ; reflexivity.
Qed.
Section S.
(** A cnf tracking annotations of atoms. *) (** Type parameters *)
Variable Env : Type.
Variable Term : Type.
Variable Term' : Type.
Variable Annot : Type.
Local Notation Trace := (Trace Annot).
Variable unsat : Term' -> bool.
(* see [unsat_prop] *)
Variable deduce : Term' -> Term' -> option Term'.
(* see [deduce_prop] *)
Local Notation null := (@null Annot).
Local Notation push := (@push Annot).
Local Notation merge := (@merge Annot).
Definition clause := list (Term' * Annot).
Definition cnf := list clause.
Variable normalise : Term -> Annot -> cnf.
Variable negate : Term -> Annot -> cnf.
Definition cnf_tt : cnf := @nil clause.
Definition cnf_ff : cnf := cons (@nil (Term' * Annot)) nil.
(** Our cnf is optimised and detects contradictions on the fly. *)
Fixpoint add_term (t: Term' * Annot) (cl : clause) : option clause := match cl with | nil => match deduce (fst t) (fst t) with | None => Some (t ::nil) | Some u => if unsat u then None else Some (t::nil) end | t'::cl => match deduce (fst t) (fst t') with | None => match add_term t cl with | None => None | Some cl' => Some (t' :: cl') end | Some u => if unsat u then None else match add_term t cl with | None => None | Some cl' => Some (t' :: cl') end end end.
Fixpoint or_clause (cl1 cl2 : clause) : option clause := match cl1 with | nil => Some cl2 | t::cl => match add_term t cl2 with | None => None | Some cl' => or_clause cl cl' end end.
Definition xor_clause_cnf (t:clause) (f:cnf) : cnf := List.fold_left (fun acc e => match or_clause t e with | None => acc | Some cl => cl :: acc end) f nil .
Definition or_clause_cnf (t: clause) (f:cnf) : cnf := match t with | nil => f | _ => xor_clause_cnf t f end.
Fixpoint or_cnf (f : cnf) (f' : cnf) {struct f}: cnf := match f with | nil => cnf_tt | e :: rst => (or_cnf rst f') +++ (or_clause_cnf e f') end.
Definition and_cnf (f1 : cnf) (f2 : cnf) : cnf := f1 +++ f2.
(** TX is Prop in Coq and EConstr.constr in Ocaml. AF is unit in Coq and Names.Id.t in Ocaml *)
Definition TFormula (TX: kind -> Type) (AF: Type) := @GFormula Term TX Annot AF.
Definition is_cnf_tt (c : cnf) : bool := match c with | nil => true | _ => false end.
Definition is_cnf_ff (c : cnf) : bool := match c with | nil::nil => true | _ => false end.
Definition and_cnf_opt (f1 : cnf) (f2 : cnf) : cnf := if is_cnf_ff f1 || is_cnf_ff f2 then cnf_ff else if is_cnf_tt f2 then f1 else and_cnf f1 f2.
Definition or_cnf_opt (f1 : cnf) (f2 : cnf) : cnf := if is_cnf_tt f1 || is_cnf_tt f2 then cnf_tt else if is_cnf_ff f2 then f1 else or_cnf f1 f2.
Section REC.
Context {TX : kind -> Type}.
Context {AF : Type}.
Variable REC : forall (pol : bool) (k: kind) (f : TFormula TX AF k), cnf.
Definition mk_and (k: kind) (pol:bool) (f1 f2 : TFormula TX AF k):= (if pol then and_cnf_opt else or_cnf_opt) (REC pol f1) (REC pol f2).
Definition mk_or (k: kind) (pol:bool) (f1 f2 : TFormula TX AF k):= (if pol then or_cnf_opt else and_cnf_opt) (REC pol f1) (REC pol f2).
Definition mk_impl (k: kind) (pol:bool) (f1 f2 : TFormula TX AF k):= (if pol then or_cnf_opt else and_cnf_opt) (REC (negb pol) f1) (REC pol f2).
Definition mk_iff (k: kind) (pol:bool) (f1 f2: TFormula TX AF k):= or_cnf_opt (and_cnf_opt (REC (negb pol) f1) (REC false f2)) (and_cnf_opt (REC pol f1) (REC true f2)).
End REC.
Definition is_bool {TX : kind -> Type} {AF: Type} (k: kind) (f : TFormula TX AF k) := match f with | TT _ => Some true | FF _ => Some false | _ => None end.
Lemma is_bool_inv : forall {TX : kind -> Type} {AF: Type} (k: kind) (f : TFormula TX AF k) res, is_bool f = Some res -> f = if res then TT _ else FF _.
Proof.
intros TX AF k f res H.
destruct f ; inversion H; reflexivity.
Qed.
Fixpoint xcnf {TX : kind -> Type} {AF: Type} (pol : bool) (k: kind) (f : TFormula TX AF k) {struct f}: cnf := match f with | TT _ => if pol then cnf_tt else cnf_ff | FF _ => if pol then cnf_ff else cnf_tt | X _ p => if pol then cnf_ff else cnf_ff (* This is not complete - cannot negate any proposition *) | A _ x t => if pol then normalise x t else negate x t | NOT e => xcnf (negb pol) e | AND e1 e2 => mk_and xcnf pol e1 e2 | OR e1 e2 => mk_or xcnf pol e1 e2 | IMPL e1 _ e2 => mk_impl xcnf pol e1 e2 | IFF e1 e2 => match is_bool e2 with | Some isb => xcnf (if isb then pol else negb pol) e1 | None => mk_iff xcnf pol e1 e2 end | EQ e1 e2 => match is_bool e2 with | Some isb => xcnf (if isb then pol else negb pol) e1 | None => mk_iff xcnf pol e1 e2 end end.
Section CNFAnnot.
(** Records annotations used to optimise the cnf. Those need to be kept when pruning the formula. For efficiency, this is a separate function. *)
Fixpoint radd_term (t : Term' * Annot) (cl : clause) : clause + Trace := match cl with | nil => (* if t is unsat, the clause is empty BUT t is needed. *) match deduce (fst t) (fst t) with | Some u => if unsat u then inr (push (snd t) null) else inl (t::nil) | None => inl (t::nil) end | t'::cl => (* if t /\ t' is unsat, the clause is empty BUT t & t' are needed *) match deduce (fst t) (fst t') with | Some u => if unsat u then inr (push (snd t) (push (snd t') null)) else match radd_term t cl with | inl cl' => inl (t'::cl') | inr l => inr l end | None => match radd_term t cl with | inl cl' => inl (t'::cl') | inr l => inr l end end end.
Fixpoint ror_clause cl1 cl2 := match cl1 with | nil => inl cl2 | t::cl => match radd_term t cl2 with | inl cl' => ror_clause cl cl' | inr l => inr l end end.
Definition xror_clause_cnf t f := List.fold_left (fun '(acc,tg) e => match ror_clause t e with | inl cl => (cl :: acc,tg) | inr l => (acc,merge tg l) end) f (nil, null).
Definition ror_clause_cnf t f := match t with | nil => (f, null) | _ => xror_clause_cnf t f end.
Fixpoint ror_cnf (f f':list clause) := match f with | nil => (cnf_tt, null) | e :: rst => let (rst_f',t) := ror_cnf rst f' in let (e_f', t') := ror_clause_cnf e f' in (rst_f' +++ e_f', merge t t') end.
Definition annot_of_clause (l : clause) : list Annot := List.map snd l.
Definition annot_of_cnf (f : cnf) : list Annot := List.fold_left (fun acc e => annot_of_clause e +++ acc ) f nil.
Definition ror_cnf_opt f1 f2 := if is_cnf_tt f1 then (cnf_tt, null) else if is_cnf_tt f2 then (cnf_tt, null) else if is_cnf_ff f2 then (f1, null) else ror_cnf f1 f2.
Definition ocons {A : Type} (o : option A) (l : list A) : list A := match o with | None => l | Some e => e ::l end.
Definition ratom (c : cnf) (a : Annot) : cnf * Trace := if is_cnf_ff c || is_cnf_tt c then (c,push a null) else (c,null).
(* t is embedded in c *)
Section REC.
Context {TX : kind -> Type} {AF : Type}.
Variable RXCNF : forall (polarity: bool) (k: kind) (f: TFormula TX AF k) , cnf * Trace.
Definition rxcnf_and (polarity:bool) (k: kind) (e1 e2 : TFormula TX AF k) := let '(e1,t1) := RXCNF polarity e1 in let '(e2,t2) := RXCNF polarity e2 in if polarity then (and_cnf_opt e1 e2, merge t1 t2) else let (f',t') := ror_cnf_opt e1 e2 in (f', merge t1 (merge t2 t')).
Definition rxcnf_or (polarity:bool) (k: kind) (e1 e2 : TFormula TX AF k) := let '(e1,t1) := RXCNF polarity e1 in let '(e2,t2) := RXCNF polarity e2 in if polarity then let (f',t') := ror_cnf_opt e1 e2 in (f', merge t1 (merge t2 t')) else (and_cnf_opt e1 e2, merge t1 t2).
Definition rxcnf_impl (polarity:bool) (k: kind) (e1 e2 : TFormula TX AF k) := let '(e1 , t1) := (RXCNF (negb polarity) e1) in if polarity then if is_cnf_tt e1 then (e1,t1) else if is_cnf_ff e1 then RXCNF polarity e2 else (* compute disjunction *) let '(e2 , t2) := (RXCNF polarity e2) in let (f',t') := ror_cnf_opt e1 e2 in (f', merge t1 (merge t2 t')) (* record the hypothesis *) else let '(e2 , t2) := (RXCNF polarity e2) in (and_cnf_opt e1 e2, merge t1 t2).
Definition rxcnf_iff (polarity:bool) (k: kind) (e1 e2 : TFormula TX AF k) := let '(c1,t1) := RXCNF (negb polarity) e1 in let '(c2,t2) := RXCNF false e2 in let '(c3,t3) := RXCNF polarity e1 in let '(c4,t4) := RXCNF true e2 in let (f',t') := ror_cnf_opt (and_cnf_opt c1 c2) (and_cnf_opt c3 c4) in (f', merge t1 (merge t2 (merge t3 (merge t4 t')))) .
End REC.
Fixpoint rxcnf {TX : kind -> Type} {AF: Type}(polarity : bool) (k: kind) (f : TFormula TX AF k) : cnf * Trace := match f with | TT _ => if polarity then (cnf_tt, null) else (cnf_ff, null) | FF _ => if polarity then (cnf_ff, null) else (cnf_tt, null) | X b p => if polarity then (cnf_ff, null) else (cnf_ff, null) | A _ x t => ratom (if polarity then normalise x t else negate x t) t | NOT e => rxcnf (negb polarity) e | AND e1 e2 => rxcnf_and rxcnf polarity e1 e2 | OR e1 e2 => rxcnf_or rxcnf polarity e1 e2 | IMPL e1 a e2 => rxcnf_impl rxcnf polarity e1 e2 | IFF e1 e2 => rxcnf_iff rxcnf polarity e1 e2 | EQ e1 e2 => rxcnf_iff rxcnf polarity e1 e2 end.
Section Abstraction.
Variable TX : kind -> Type.
Variable AF : Type.
Class to_constrT : Type := { mkTT : forall (k: kind), TX k; mkFF : forall (k: kind), TX k; mkA : forall (k: kind), Term -> Annot -> TX k; mkAND : forall (k: kind), TX k -> TX k -> TX k; mkOR : forall (k: kind), TX k -> TX k -> TX k; mkIMPL : forall (k: kind), TX k -> TX k -> TX k; mkIFF : forall (k: kind), TX k -> TX k -> TX k; mkNOT : forall (k: kind), TX k -> TX k; mkEQ : TX isBool -> TX isBool -> TX isProp }.
Context {to_constr : to_constrT}.
Fixpoint aformula (k: kind) (f : TFormula TX AF k) : TX k := match f with | TT b => mkTT b | FF b => mkFF b | X b p => p | A b x t => mkA b x t | AND f1 f2 => mkAND (aformula f1) (aformula f2) | OR f1 f2 => mkOR (aformula f1) (aformula f2) | IMPL f1 o f2 => mkIMPL (aformula f1) (aformula f2) | IFF f1 f2 => mkIFF (aformula f1) (aformula f2) | NOT f => mkNOT (aformula f) | EQ f1 f2 => mkEQ (aformula f1) (aformula f2) end.
Definition is_X (k: kind) (f : TFormula TX AF k) : option (TX k) := match f with | X _ p => Some p | _ => None end.
Definition is_X_inv : forall (k: kind) (f: TFormula TX AF k) x, is_X f = Some x -> f = X k x.
Proof.
intros k f; destruct f ; simpl ; try congruence.
Qed.
Variable needA : Annot -> bool.
Definition abs_and (k: kind) (f1 f2 : TFormula TX AF k) (c : forall (k: kind), TFormula TX AF k -> TFormula TX AF k -> TFormula TX AF k) := match is_X f1 , is_X f2 with | Some _ , _ | _ , Some _ => X k (aformula (c k f1 f2)) | _ , _ => c k f1 f2 end.
Definition abs_or (k: kind) (f1 f2 : TFormula TX AF k) (c : forall (k: kind), TFormula TX AF k -> TFormula TX AF k -> TFormula TX AF k) := match is_X f1 , is_X f2 with | Some _ , Some _ => X k (aformula (c k f1 f2)) | _ , _ => c k f1 f2 end.
Definition abs_not (k: kind) (f1 : TFormula TX AF k) (c : forall (k: kind), TFormula TX AF k -> TFormula TX AF k) := match is_X f1 with | Some _ => X k (aformula (c k f1 )) | _ => c k f1 end.
Definition mk_arrow (o : option AF) (k: kind) (f1 f2: TFormula TX AF k) := match o with | None => IMPL f1 None f2 | Some _ => if is_X f1 then f2 else IMPL f1 o f2 end.
Fixpoint abst_simpl (k: kind) (f : TFormula TX AF k) : TFormula TX AF k:= match f with | TT k => TT k | FF k => FF k | X k p => X k p | A k x t => if needA t then A k x t else X k (mkA k x t) | AND f1 f2 => AND (abst_simpl f1) (abst_simpl f2) | OR f1 f2 => OR (abst_simpl f1) (abst_simpl f2) | IMPL f1 o f2 => IMPL (abst_simpl f1) o (abst_simpl f2) | NOT f => NOT (abst_simpl f) | IFF f1 f2 => IFF (abst_simpl f1) (abst_simpl f2) | EQ f1 f2 => EQ (abst_simpl f1) (abst_simpl f2) end.
Section REC.
Variable REC : forall (pol : bool) (k: kind) (f : TFormula TX AF k), TFormula TX AF k.
Definition abst_and (pol : bool) (k: kind) (f1 f2:TFormula TX AF k) : TFormula TX AF k:= (if pol then abs_and else abs_or) k (REC pol f1) (REC pol f2) AND.
Definition abst_or (pol : bool) (k: kind) (f1 f2:TFormula TX AF k) : TFormula TX AF k:= (if pol then abs_or else abs_and) k (REC pol f1) (REC pol f2) OR.
Definition abst_impl (pol : bool) (o :option AF) (k: kind) (f1 f2:TFormula TX AF k) : TFormula TX AF k:= (if pol then abs_or else abs_and) k (REC (negb pol) f1) (REC pol f2) (mk_arrow o).
Definition or_is_X (k: kind) (f1 f2: TFormula TX AF k) : bool := match is_X f1 , is_X f2 with | Some _ , _ | _ , Some _ => true | _ , _ => false end.
Definition abs_iff (k: kind) (nf1 ff2 f1 tf2 : TFormula TX AF k) (r: kind) (def : TFormula TX AF r) : TFormula TX AF r := if andb (or_is_X nf1 ff2) (or_is_X f1 tf2) then X r (aformula def) else def.
Definition abst_iff (pol : bool) (k: kind) (f1 f2: TFormula TX AF k) : TFormula TX AF k := abs_iff (REC (negb pol) f1) (REC false f2) (REC pol f1) (REC true f2) (IFF (abst_simpl f1) (abst_simpl f2)).
Definition abst_eq (pol : bool) (f1 f2: TFormula TX AF isBool) : TFormula TX AF isProp := abs_iff (REC (negb pol) f1) (REC false f2) (REC pol f1) (REC true f2) (EQ (abst_simpl f1) (abst_simpl f2)).
End REC.
Fixpoint abst_form (pol : bool) (k: kind) (f : TFormula TX AF k) : TFormula TX AF k:= match f with | TT k => if pol then TT k else X k (mkTT k) | FF k => if pol then X k (mkFF k) else FF k | X k p => X k p | A k x t => if needA t then A k x t else X k (mkA k x t) | AND f1 f2 => abst_and abst_form pol f1 f2 | OR f1 f2 => abst_or abst_form pol f1 f2 | IMPL f1 o f2 => abst_impl abst_form pol o f1 f2 | NOT f => abs_not (abst_form (negb pol) f) NOT | IFF f1 f2 => abst_iff abst_form pol f1 f2 | EQ f1 f2 => abst_eq abst_form pol f1 f2 end.
Lemma if_same : forall {A: Type} (b: bool) (t:A), (if b then t else t) = t.
Proof.
intros A b; destruct b ; reflexivity.
Qed.
Lemma is_cnf_tt_cnf_ff : is_cnf_tt cnf_ff = false.
Proof.
reflexivity.
Qed.
Lemma is_cnf_ff_cnf_ff : is_cnf_ff cnf_ff = true.
Proof.
reflexivity.
Qed.
Lemma is_cnf_tt_inv : forall f1, is_cnf_tt f1 = true -> f1 = cnf_tt.
Proof.
unfold cnf_tt.
intros f1; destruct f1 ; simpl ; try congruence.
Qed.
Lemma is_cnf_ff_inv : forall f1, is_cnf_ff f1 = true -> f1 = cnf_ff.
Proof.
unfold cnf_ff.
intros f1 ; destruct f1 as [|c f1] ; simpl ; try congruence.
destruct c ; simpl ; try congruence.
destruct f1 ; try congruence.
reflexivity.
Qed.
Lemma if_cnf_tt : forall f, (if is_cnf_tt f then cnf_tt else f) = f.
Proof.
intros f.
destruct (is_cnf_tt f) eqn:EQ.
-
apply is_cnf_tt_inv in EQ;auto.
-
reflexivity.
Qed.
Lemma or_cnf_opt_cnf_ff : forall f, or_cnf_opt cnf_ff f = f.
Proof.
intros f.
unfold or_cnf_opt.
rewrite is_cnf_tt_cnf_ff.
simpl.
destruct (is_cnf_tt f) eqn:EQ.
-
apply is_cnf_tt_inv in EQ.
congruence.
-
destruct (is_cnf_ff f) eqn:EQ1.
+
apply is_cnf_ff_inv in EQ1.
congruence.
+
reflexivity.
Qed.
Lemma abs_and_pol : forall (k: kind) (f1 f2: TFormula TX AF k) pol, and_cnf_opt (xcnf pol f1) (xcnf pol f2) = xcnf pol (abs_and f1 f2 (if pol then AND else OR)).
Proof.
unfold abs_and; intros k f1 f2 pol.
destruct (is_X f1) eqn:EQ1.
-
apply is_X_inv in EQ1.
subst.
simpl.
rewrite if_same.
reflexivity.
-
destruct (is_X f2) eqn:EQ2.
+
apply is_X_inv in EQ2.
subst.
simpl.
rewrite if_same.
unfold and_cnf_opt.
rewrite orb_comm.
reflexivity.
+
destruct pol ; simpl; auto.
Qed.
Lemma abs_or_pol : forall (k: kind) (f1 f2:TFormula TX AF k) pol, or_cnf_opt (xcnf pol f1) (xcnf pol f2) = xcnf pol (abs_or f1 f2 (if pol then OR else AND)).
Proof.
unfold abs_or; intros k f1 f2 pol.
destruct (is_X f1) eqn:EQ1.
-
apply is_X_inv in EQ1.
subst.
destruct (is_X f2) eqn:EQ2.
+
apply is_X_inv in EQ2.
subst.
simpl.
rewrite if_same.
reflexivity.
+
simpl.
rewrite if_same.
destruct pol ; simpl; auto.
-
destruct pol ; simpl ; auto.
Qed.
Variable needA_all : forall a, needA a = true.
Lemma xcnf_true_mk_arrow_l : forall b o t (f:TFormula TX AF b), xcnf true (mk_arrow o (X b t) f) = xcnf true f.
Proof.
intros b o; destruct o ; simpl; auto.
intros.
rewrite or_cnf_opt_cnf_ff.
reflexivity.
Qed.
Lemma or_cnf_opt_cnf_ff_r : forall f, or_cnf_opt f cnf_ff = f.
Proof.
unfold or_cnf_opt.
intros.
rewrite is_cnf_tt_cnf_ff.
rewrite orb_comm.
simpl.
apply if_cnf_tt.
Qed.
Lemma xcnf_true_mk_arrow_r : forall b o t (f:TFormula TX AF b), xcnf true (mk_arrow o f (X b t)) = xcnf false f.
Proof.
intros b o; destruct o ; simpl; auto.
-
intros t f.
destruct (is_X f) eqn:EQ.
+
apply is_X_inv in EQ.
subst.
reflexivity.
+
simpl.
apply or_cnf_opt_cnf_ff_r.
-
intros.
apply or_cnf_opt_cnf_ff_r.
Qed.
Lemma and_cnf_opt_cnf_ff_r : forall f, and_cnf_opt f cnf_ff = cnf_ff.
Proof.
intros.
unfold and_cnf_opt.
rewrite is_cnf_ff_cnf_ff.
rewrite orb_comm.
reflexivity.
Qed.
Lemma and_cnf_opt_cnf_ff : forall f, and_cnf_opt cnf_ff f = cnf_ff.
Proof.
intros.
unfold and_cnf_opt.
rewrite is_cnf_ff_cnf_ff.
reflexivity.
Qed.
Lemma and_cnf_opt_cnf_tt : forall f, and_cnf_opt f cnf_tt = f.
Proof.
intros f.
unfold and_cnf_opt.
simpl.
rewrite orb_comm.
simpl.
destruct (is_cnf_ff f) eqn:EQ ; auto.
apply is_cnf_ff_inv in EQ.
auto.
Qed.
Lemma is_bool_abst_simpl : forall b (f:TFormula TX AF b), is_bool (abst_simpl f) = is_bool f.
Proof.
intros b f; induction f ; simpl ; auto.
rewrite needA_all.
reflexivity.
Qed.
Lemma abst_simpl_correct : forall b (f:TFormula TX AF b) pol, xcnf pol f = xcnf pol (abst_simpl f).
Proof.
intros b f; induction f as [| | | |? ? IHf1 f2 IHf2|? ? IHf1 f2 IHf2 |? ? IHf|? ? IHf1 ? f2 IHf2|? ? IHf1 f2 IHf2|f1 IHf1 f2 IHf2]; simpl;intros; unfold mk_and,mk_or,mk_impl, mk_iff; rewrite <- ?IHf; try (rewrite <- !IHf1; rewrite <- !IHf2); try reflexivity.
-
rewrite needA_all.
reflexivity.
-
rewrite is_bool_abst_simpl.
destruct (is_bool f2); auto.
-
rewrite is_bool_abst_simpl.
destruct (is_bool f2); auto.
Qed.
Ltac is_X t := match goal with | |-context[is_X ?X] => let f := fresh "EQ" in destruct (is_X X) as [t|] eqn:f ; [apply is_X_inv in f|] end.
Ltac cnf_simpl := repeat match goal with | |- context[and_cnf_opt cnf_ff _ ] => rewrite and_cnf_opt_cnf_ff | |- context[and_cnf_opt _ cnf_ff] => rewrite and_cnf_opt_cnf_ff_r | |- context[and_cnf_opt _ cnf_tt] => rewrite and_cnf_opt_cnf_tt | |- context[or_cnf_opt cnf_ff _] => rewrite or_cnf_opt_cnf_ff | |- context[or_cnf_opt _ cnf_ff] => rewrite or_cnf_opt_cnf_ff_r end.
Lemma or_is_X_inv : forall (k: kind) (f1 f2 : TFormula TX AF k), or_is_X f1 f2 = true -> exists k1, is_X f1 = Some k1 \/ is_X f2 = Some k1.
Proof.
unfold or_is_X.
intros k f1 f2.
is_X t; is_X t0.
-
exists t ; intuition.
-
exists t ; intuition.
-
exists t0 ; intuition.
-
congruence.
Qed.
Lemma mk_iff_is_bool : forall (k: kind) (f1 f2:TFormula TX AF k) pol, match is_bool f2 with | Some isb => xcnf (if isb then pol else negb pol) f1 | None => mk_iff xcnf pol f1 f2 end = mk_iff xcnf pol f1 f2.
Proof.
intros k f1 f2 pol.
destruct (is_bool f2) as [b|] eqn:EQ; auto.
apply is_bool_inv in EQ.
subst.
unfold mk_iff.
destruct b ; simpl; cnf_simpl; reflexivity.
Qed.
Lemma abst_iff_correct : forall (k: kind) (f1 f2 : GFormula k) (IHf1 : forall pol : bool, xcnf pol f1 = xcnf pol (abst_form pol f1)) (IHf2 : forall pol : bool, xcnf pol f2 = xcnf pol (abst_form pol f2)) (pol : bool), xcnf pol (IFF f1 f2) = xcnf pol (abst_iff abst_form pol f1 f2).
Proof.
intros k f1 f2 IHf1 IHf2 pol; simpl.
assert (D1 :mk_iff xcnf pol f1 f2 = mk_iff xcnf pol (abst_simpl f1) (abst_simpl f2)).
{
simpl.
unfold mk_iff.
rewrite <- !abst_simpl_correct.
reflexivity.
}
rewrite mk_iff_is_bool.
unfold abst_iff,abs_iff.
destruct ( or_is_X (abst_form (negb pol) f1) (abst_form false f2) && or_is_X (abst_form pol f1) (abst_form true f2) ) eqn:EQ1.
+
simpl.
rewrite andb_true_iff in EQ1.
destruct EQ1 as (EQ1 & EQ2).
apply or_is_X_inv in EQ1.
apply or_is_X_inv in EQ2.
destruct EQ1 as (b1 & EQ1).
destruct EQ2 as (b2 & EQ2).
rewrite if_same.
unfold mk_iff.
rewrite !IHf1.
rewrite !IHf2.
destruct EQ1 as [EQ1 | EQ1] ; apply is_X_inv in EQ1; destruct EQ2 as [EQ2 | EQ2] ; apply is_X_inv in EQ2; rewrite EQ1; rewrite EQ2; simpl; repeat rewrite if_same ; cnf_simpl; auto.
+
simpl.
rewrite mk_iff_is_bool.
unfold mk_iff.
rewrite <- ! abst_simpl_correct.
reflexivity.
Qed.
Lemma abst_eq_correct : forall (f1 f2 : GFormula isBool) (IHf1 : forall pol : bool, xcnf pol f1 = xcnf pol (abst_form pol f1)) (IHf2 : forall pol : bool, xcnf pol f2 = xcnf pol (abst_form pol f2)) (pol : bool), xcnf pol (EQ f1 f2) = xcnf pol (abst_form pol (EQ f1 f2)).
Proof.
intros f1 f2 IHf1 IHf2 pol.
change (xcnf pol (IFF f1 f2) = xcnf pol (abst_form pol (EQ f1 f2))).
rewrite abst_iff_correct by assumption.
simpl.
unfold abst_iff, abst_eq.
unfold abs_iff.
destruct (or_is_X (abst_form (negb pol) f1) (abst_form false f2) && or_is_X (abst_form pol f1) (abst_form true f2) ) ; auto.
Qed.
Lemma abst_form_correct : forall b (f:TFormula TX AF b) pol, xcnf pol f = xcnf pol (abst_form pol f).
Proof.
intros b f; induction f as [| | | |? ? IHf1 ? IHf2|? ? IHf1 ? IHf2|? f IHf |? f1 IHf1 o f2 IHf2|? IHf1 ? IHf2|]; intros pol.
-
simpl.
destruct pol ; reflexivity.
-
simpl.
destruct pol ; reflexivity.
-
simpl.
reflexivity.
-
simpl.
rewrite needA_all.
reflexivity.
-
simpl.
unfold mk_and.
specialize (IHf1 pol).
specialize (IHf2 pol).
rewrite IHf1.
rewrite IHf2.
destruct pol.
+
apply abs_and_pol; auto.
+
apply abs_or_pol.
-
simpl.
unfold mk_or.
specialize (IHf1 pol).
specialize (IHf2 pol).
rewrite IHf1.
rewrite IHf2.
destruct pol.
+
apply abs_or_pol; auto.
+
apply abs_and_pol; auto.
-
simpl.
unfold abs_not.
specialize (IHf (negb pol)).
destruct (is_X (abst_form (negb pol) f)) eqn:EQ1.
+
apply is_X_inv in EQ1.
rewrite EQ1 in *.
simpl in *.
destruct pol ; auto.
+
simpl.
congruence.
-
simpl.
unfold mk_impl.
specialize (IHf1 (negb pol)).
specialize (IHf2 pol).
destruct pol.
+
simpl in *.
unfold abs_or.
destruct (is_X (abst_form false f1)) eqn:EQ1; destruct (is_X (abst_form true f2)) eqn:EQ2 ; simpl.
*
apply is_X_inv in EQ1.
apply is_X_inv in EQ2.
rewrite EQ1 in *.
rewrite EQ2 in *.
rewrite IHf1.
rewrite IHf2.
simpl.
reflexivity.
*
apply is_X_inv in EQ1.
rewrite EQ1 in *.
rewrite IHf1.
simpl.
rewrite xcnf_true_mk_arrow_l.
rewrite or_cnf_opt_cnf_ff.
congruence.
*
apply is_X_inv in EQ2.
rewrite EQ2 in *.
rewrite IHf2.
simpl.
rewrite xcnf_true_mk_arrow_r.
rewrite or_cnf_opt_cnf_ff_r.
congruence.
*
destruct o ; simpl ; try congruence.
rewrite EQ1.
simpl.
congruence.
+
simpl in *.
unfold abs_and.
destruct (is_X (abst_form true f1)) eqn:EQ1; destruct (is_X (abst_form false f2)) eqn:EQ2 ; simpl.
*
apply is_X_inv in EQ1.
apply is_X_inv in EQ2.
rewrite EQ1 in *.
rewrite EQ2 in *.
rewrite IHf1.
rewrite IHf2.
simpl.
reflexivity.
*
apply is_X_inv in EQ1.
rewrite EQ1 in *.
rewrite IHf1.
simpl.
reflexivity.
*
apply is_X_inv in EQ2.
rewrite EQ2 in *.
rewrite IHf2.
simpl.
unfold and_cnf_opt.
rewrite orb_comm.
reflexivity.
*
destruct o; simpl.
--
rewrite EQ1.
simpl.
congruence.
--
congruence.
-
apply abst_iff_correct; auto.
-
apply abst_eq_correct; auto.
Qed.
End Abstraction.
End CNFAnnot.
Lemma radd_term_term : forall a' a cl, radd_term a a' = inl cl -> add_term a a' = Some cl.
Proof.
intros a'; induction a' as [|a a' IHa']; simpl.
-
intros a cl H.
destruct (deduce (fst a) (fst a)) as [t|].
+
destruct (unsat t).
*
congruence.
*
inversion H.
reflexivity.
+
inversion H ;reflexivity.
-
intros a0 cl H.
destruct (deduce (fst a0) (fst a)) as [t|].
+
destruct (unsat t).
*
congruence.
*
destruct (radd_term a0 a') eqn:RADD; try congruence.
inversion H.
subst.
apply IHa' in RADD.
rewrite RADD.
reflexivity.
+
destruct (radd_term a0 a') eqn:RADD; try congruence.
inversion H.
subst.
apply IHa' in RADD.
rewrite RADD.
reflexivity.
Qed.
Lemma radd_term_term' : forall a' a cl, add_term a a' = Some cl -> radd_term a a' = inl cl.
Proof.
intros a'; induction a' as [|a a' IHa']; simpl.
-
intros a cl H.
destruct (deduce (fst a) (fst a)) as [t|].
+
destruct (unsat t).
*
congruence.
*
inversion H.
reflexivity.
+
inversion H ;reflexivity.
-
intros a0 cl H.
destruct (deduce (fst a0) (fst a)) as [t|].
+
destruct (unsat t).
*
congruence.
*
destruct (add_term a0 a') eqn:RADD; try congruence.
inversion H.
subst.
apply IHa' in RADD.
rewrite RADD.
reflexivity.
+
destruct (add_term a0 a') eqn:RADD; try congruence.
inversion H.
subst.
apply IHa' in RADD.
rewrite RADD.
reflexivity.
Qed.
Lemma xror_clause_clause : forall a f, fst (xror_clause_cnf a f) = xor_clause_cnf a f.
Proof.
unfold xror_clause_cnf.
unfold xor_clause_cnf.
assert (ACC: fst (@nil clause, null) = nil) by reflexivity.
intros a f.
set (F1:= (fun '(acc, tg) (e : clause) => match ror_clause a e with | inl cl => (cl :: acc, tg) | inr l => (acc, merge tg l) end)).
set (F2:= (fun (acc : list clause) (e : clause) => match or_clause a e with | Some cl => cl :: acc | None => acc end)).
revert ACC.
generalize (@nil clause, null).
generalize (@nil clause).
induction f as [|a0 f IHf]; simpl ; auto.
intros ? p ?.
apply IHf.
unfold F1 , F2.
destruct p ; simpl in * ; subst.
clear.
revert a0.
induction a as [|a a0 IHa]; simpl; auto.
intros a1.
destruct (radd_term a a1) eqn:RADD.
-
apply radd_term_term in RADD.
rewrite RADD.
auto.
-
destruct (add_term a a1) eqn:RADD'.
+
apply radd_term_term' in RADD'.
congruence.
+
reflexivity.
Qed.
Lemma ror_clause_clause : forall a f, fst (ror_clause_cnf a f) = or_clause_cnf a f.
Proof.
unfold ror_clause_cnf,or_clause_cnf.
intros a; destruct a ; auto.
apply xror_clause_clause.
Qed.
Lemma ror_cnf_cnf : forall f1 f2, fst (ror_cnf f1 f2) = or_cnf f1 f2.
Proof.
intros f1; induction f1 as [|a f1 IHf1] ; simpl ; auto.
intros f2.
specialize (IHf1 f2).
destruct(ror_cnf f1 f2).
rewrite <- ror_clause_clause.
destruct(ror_clause_cnf a f2).
simpl.
rewrite <- IHf1.
reflexivity.
Qed.
Lemma ror_opt_cnf_cnf : forall f1 f2, fst (ror_cnf_opt f1 f2) = or_cnf_opt f1 f2.
Proof.
unfold ror_cnf_opt, or_cnf_opt.
intros f1 f2.
destruct (is_cnf_tt f1).
-
simpl ; auto.
-
simpl.
destruct (is_cnf_tt f2) ; simpl ; auto.
destruct (is_cnf_ff f2) eqn:EQ.
+
reflexivity.
+
apply ror_cnf_cnf.
Qed.
Lemma ratom_cnf : forall f a, fst (ratom f a) = f.
Proof.
unfold ratom.
intros f a.
destruct (is_cnf_ff f || is_cnf_tt f); auto.
Qed.
Lemma rxcnf_and_xcnf : forall {TX : kind -> Type} {AF:Type} (k: kind) (f1 f2:TFormula TX AF k) (IHf1 : forall pol : bool, fst (rxcnf pol f1) = xcnf pol f1) (IHf2 : forall pol : bool, fst (rxcnf pol f2) = xcnf pol f2), forall pol : bool, fst (rxcnf_and rxcnf pol f1 f2) = mk_and xcnf pol f1 f2.
Proof.
intros TX AF k f1 f2 IHf1 IHf2 pol.
unfold mk_and, rxcnf_and.
specialize (IHf1 pol).
specialize (IHf2 pol).
destruct (rxcnf pol f1).
destruct (rxcnf pol f2).
simpl in *.
subst.
destruct pol ; auto.
rewrite <- ror_opt_cnf_cnf.
destruct (ror_cnf_opt (xcnf false f1) (xcnf false f2)).
reflexivity.
Qed.
Lemma rxcnf_or_xcnf : forall {TX : kind -> Type} {AF:Type} (k: kind) (f1 f2:TFormula TX AF k) (IHf1 : forall pol : bool, fst (rxcnf pol f1) = xcnf pol f1) (IHf2 : forall pol : bool, fst (rxcnf pol f2) = xcnf pol f2), forall pol : bool, fst (rxcnf_or rxcnf pol f1 f2) = mk_or xcnf pol f1 f2.
Proof.
intros TX AF k f1 f2 IHf1 IHf2 pol.
unfold rxcnf_or, mk_or.
specialize (IHf1 pol).
specialize (IHf2 pol).
destruct (rxcnf pol f1).
destruct (rxcnf pol f2).
simpl in *.
subst.
destruct pol ; auto.
rewrite <- ror_opt_cnf_cnf.
destruct (ror_cnf_opt (xcnf true f1) (xcnf true f2)).
reflexivity.
Qed.
Lemma rxcnf_impl_xcnf : forall {TX : kind -> Type} {AF:Type} (k: kind) (f1 f2:TFormula TX AF k) (IHf1 : forall pol : bool, fst (rxcnf pol f1) = xcnf pol f1) (IHf2 : forall pol : bool, fst (rxcnf pol f2) = xcnf pol f2), forall pol : bool, fst (rxcnf_impl rxcnf pol f1 f2) = mk_impl xcnf pol f1 f2.
Proof.
intros TX AF k f1 f2 IHf1 IHf2 pol.
unfold rxcnf_impl, mk_impl, mk_or.
specialize (IHf1 (negb pol)).
specialize (IHf2 pol).
rewrite <- IHf1.
rewrite <- IHf2.
destruct (rxcnf (negb pol) f1).
destruct (rxcnf pol f2).
simpl in *.
subst.
destruct pol;auto.
generalize (is_cnf_tt_inv (xcnf (negb true) f1)).
destruct (is_cnf_tt (xcnf (negb true) f1)).
+
intros H.
rewrite H by auto.
reflexivity.
+
generalize (is_cnf_ff_inv (xcnf (negb true) f1)).
destruct (is_cnf_ff (xcnf (negb true) f1)).
*
intros H.
rewrite H by auto.
unfold or_cnf_opt.
simpl.
destruct (is_cnf_tt (xcnf true f2)) eqn:EQ;auto.
--
apply is_cnf_tt_inv in EQ; auto.
--
destruct (is_cnf_ff (xcnf true f2)) eqn:EQ1.
++
apply is_cnf_ff_inv in EQ1.
congruence.
++
reflexivity.
*
rewrite <- ror_opt_cnf_cnf.
destruct (ror_cnf_opt (xcnf (negb true) f1) (xcnf true f2)).
intros.
reflexivity.
Qed.
Lemma rxcnf_iff_xcnf : forall {TX : kind -> Type} {AF:Type} (k: kind) (f1 f2:TFormula TX AF k) (IHf1 : forall pol : bool, fst (rxcnf pol f1) = xcnf pol f1) (IHf2 : forall pol : bool, fst (rxcnf pol f2) = xcnf pol f2), forall pol : bool, fst (rxcnf_iff rxcnf pol f1 f2) = mk_iff xcnf pol f1 f2.
Proof.
intros TX AF k f1 f2 IHf1 IHf2 pol.
unfold rxcnf_iff.
unfold mk_iff.
rewrite <- (IHf1 (negb pol)).
rewrite <- (IHf1 pol).
rewrite <- (IHf2 false).
rewrite <- (IHf2 true).
destruct (rxcnf (negb pol) f1) as [c ?].
destruct (rxcnf false f2) as [c0 ?].
destruct (rxcnf pol f1) as [c1 ?].
destruct (rxcnf true f2) as [c2 ?].
destruct (ror_cnf_opt (and_cnf_opt c c0) (and_cnf_opt c1 c2)) as [c3 l3] eqn:EQ.
simpl.
change c3 with (fst (c3,l3)).
rewrite <- EQ.
rewrite ror_opt_cnf_cnf.
reflexivity.
Qed.
Lemma rxcnf_xcnf : forall {TX : kind -> Type} {AF:Type} (k: kind) (f:TFormula TX AF k) pol, fst (rxcnf pol f) = xcnf pol f.
Proof.
intros TX AF k f; induction f ; simpl ; auto; intros pol.
-
destruct pol; simpl ; auto.
-
destruct pol; simpl ; auto.
-
destruct pol ; simpl ; auto.
-
intros.
rewrite ratom_cnf.
reflexivity.
-
apply rxcnf_and_xcnf; auto.
-
apply rxcnf_or_xcnf; auto.
-
apply rxcnf_impl_xcnf; auto.
-
intros.
rewrite mk_iff_is_bool.
apply rxcnf_iff_xcnf; auto.
-
intros.
rewrite mk_iff_is_bool.
apply rxcnf_iff_xcnf; auto.
Qed.
Variable eval' : Env -> Term' -> Prop.
Variable no_middle_eval' : forall env d, (eval' env d) \/ ~ (eval' env d).
Variable unsat_prop : forall t, unsat t = true -> forall env, eval' env t -> False.
Variable deduce_prop : forall t t' u, deduce t t' = Some u -> forall env, eval' env t -> eval' env t' -> eval' env u.
Definition eval_tt (env : Env) (tt : Term' * Annot) := eval' env (fst tt).
Definition eval_clause (env : Env) (cl : clause) := ~ make_conj (eval_tt env) cl.
Definition eval_cnf (env : Env) (f:cnf) := make_conj (eval_clause env) f.
Lemma eval_cnf_app : forall env x y, eval_cnf env (x+++y) <-> eval_cnf env x /\ eval_cnf env y.
Proof.
unfold eval_cnf.
intros.
rewrite make_conj_rapp.
rewrite make_conj_app ; auto.
tauto.
Qed.
Lemma eval_cnf_ff : forall env, eval_cnf env cnf_ff <-> False.
Proof using.
clear.
unfold cnf_ff, eval_cnf,eval_clause.
simpl.
tauto.
Qed.
Lemma eval_cnf_tt : forall env, eval_cnf env cnf_tt <-> True.
Proof using.
clear.
unfold cnf_tt, eval_cnf,eval_clause.
simpl.
tauto.
Qed.
Lemma eval_cnf_and_opt : forall env x y, eval_cnf env (and_cnf_opt x y) <-> eval_cnf env (and_cnf x y).
Proof.
unfold and_cnf_opt.
intros env x y.
destruct (is_cnf_ff x) eqn:F1.
{
apply is_cnf_ff_inv in F1.
simpl.
subst.
unfold and_cnf.
rewrite eval_cnf_app.
rewrite eval_cnf_ff.
tauto.
}
simpl.
destruct (is_cnf_ff y) eqn:F2.
{
apply is_cnf_ff_inv in F2.
simpl.
subst.
unfold and_cnf.
rewrite eval_cnf_app.
rewrite eval_cnf_ff.
tauto.
}
destruct (is_cnf_tt y) eqn:F3.
{
apply is_cnf_tt_inv in F3.
subst.
unfold and_cnf.
rewrite eval_cnf_app.
rewrite eval_cnf_tt.
tauto.
}
tauto.
Qed.
Definition eval_opt_clause (env : Env) (cl: option clause) := match cl with | None => True | Some cl => eval_clause env cl end.
Lemma add_term_correct : forall env t cl , eval_opt_clause env (add_term t cl) <-> eval_clause env (t::cl).
Proof.
intros env t cl; induction cl as [|a cl IHcl].
-
(* BC *)
simpl.
case_eq (deduce (fst t) (fst t)) ; try tauto.
intros t0 H.
generalize (@deduce_prop _ _ _ H env).
case_eq (unsat t0) ; try tauto.
{
intros H0 ?.
generalize (@unsat_prop _ H0 env).
unfold eval_clause.
rewrite make_conj_cons.
simpl; intros.
tauto.
}
-
(* IC *)
simpl.
case_eq (deduce (fst t) (fst a)); intros t0; [intros H|].
+
generalize (@deduce_prop _ _ _ H env).
case_eq (unsat t0); intros H0 H1.
{
generalize (@unsat_prop _ H0 env).
simpl.
unfold eval_clause.
repeat rewrite make_conj_cons.
tauto.
}
destruct (add_term t cl) ; simpl in * ; try tauto.
{
intros.
unfold eval_clause in *.
repeat rewrite make_conj_cons in *.
tauto.
}
{
unfold eval_clause in *.
repeat rewrite make_conj_cons in *.
tauto.
}
+
destruct (add_term t cl) ; simpl in *; unfold eval_clause in * ; repeat rewrite make_conj_cons in *; tauto.
Qed.
Lemma no_middle_eval_tt : forall env a, eval_tt env a \/ ~ eval_tt env a.
Proof.
unfold eval_tt.
auto.
Qed.
#[local] Hint Resolve no_middle_eval_tt : tauto.
Lemma or_clause_correct : forall cl cl' env, eval_opt_clause env (or_clause cl cl') <-> eval_clause env cl \/ eval_clause env cl'.
Proof.
intros cl; induction cl as [|a cl IHcl].
-
simpl.
unfold eval_clause at 2.
simpl.
tauto.
-
intros cl' env.
simpl.
assert (HH := add_term_correct env a cl').
assert (eval_tt env a \/ ~ eval_tt env a) by (apply no_middle_eval').
destruct (add_term a cl'); simpl in *.
+
rewrite IHcl.
unfold eval_clause in *.
rewrite !make_conj_cons in *.
tauto.
+
unfold eval_clause in *.
repeat rewrite make_conj_cons in *.
tauto.
Qed.
Lemma or_clause_cnf_correct : forall env t f, eval_cnf env (or_clause_cnf t f) <-> (eval_clause env t) \/ (eval_cnf env f).
Proof.
unfold eval_cnf.
unfold or_clause_cnf.
intros env t.
set (F := (fun (acc : list clause) (e : clause) => match or_clause t e with | Some cl => cl :: acc | None => acc end)).
intro f.
assert ( make_conj (eval_clause env) (fold_left F f nil) <-> (eval_clause env t \/ make_conj (eval_clause env) f) /\ make_conj (eval_clause env) nil) as H.
{
generalize (@nil clause) as acc.
induction f as [|a f IHf].
-
simpl.
intros ; tauto.
-
intros.
simpl fold_left.
rewrite IHf.
rewrite make_conj_cons.
unfold F in *; clear F.
generalize (or_clause_correct t a env).
destruct (or_clause t a).
+
rewrite make_conj_cons.
simpl.
tauto.
+
simpl.
tauto.
}
destruct t ; auto.
-
unfold eval_clause ; simpl.
tauto.
-
unfold xor_clause_cnf.
unfold F in H.
rewrite H.
unfold make_conj at 2.
tauto.
Qed.
Lemma eval_cnf_cons : forall env a f, (~ make_conj (eval_tt env) a /\ eval_cnf env f) <-> eval_cnf env (a::f).
Proof.
intros.
unfold eval_cnf in *.
rewrite make_conj_cons ; eauto.
unfold eval_clause at 2.
tauto.
Qed.
Lemma eval_cnf_cons_iff : forall env a f, ((~ make_conj (eval_tt env) a) /\ eval_cnf env f) <-> eval_cnf env (a::f).
Proof using.
intros; clear.
unfold eval_cnf in *.
rewrite make_conj_cons ; eauto.
unfold eval_clause.
tauto.
Qed.
Lemma or_cnf_correct : forall env f f', eval_cnf env (or_cnf f f') <-> (eval_cnf env f) \/ (eval_cnf env f').
Proof.
intros env f; induction f as [|a f IHf].
-
unfold eval_cnf.
simpl.
tauto.
(**)
-
intros.
simpl.
rewrite eval_cnf_app.
rewrite <- eval_cnf_cons_iff.
rewrite IHf.
rewrite or_clause_cnf_correct.
unfold eval_clause.
tauto.
Qed.
Lemma or_cnf_opt_correct : forall env f f', eval_cnf env (or_cnf_opt f f') <-> eval_cnf env (or_cnf f f').
Proof.
unfold or_cnf_opt.
intros env f f'.
destruct (is_cnf_tt f) eqn:TF.
{
simpl.
apply is_cnf_tt_inv in TF.
subst.
rewrite or_cnf_correct.
rewrite eval_cnf_tt.
tauto.
}
destruct (is_cnf_tt f') eqn:TF'.
{
simpl.
apply is_cnf_tt_inv in TF'.
subst.
rewrite or_cnf_correct.
rewrite eval_cnf_tt.
tauto.
}
{
simpl.
destruct (is_cnf_ff f') eqn:EQ.
-
apply is_cnf_ff_inv in EQ.
subst.
rewrite or_cnf_correct.
rewrite eval_cnf_ff.
tauto.
-
tauto.
}
Qed.
Variable eval : Env -> forall (k: kind), Term -> rtyp k.
Variable normalise_correct : forall env b t tg, eval_cnf env (normalise t tg) -> hold b (eval env b t).
Variable negate_correct : forall env b t tg, eval_cnf env (negate t tg) -> hold b (eNOT b (eval env b t)).
Definition e_rtyp (k: kind) (x : rtyp k) : rtyp k := x.
Lemma hold_eTT : forall k, hold k (eTT k).
Proof.
intros k; destruct k ; simpl; auto.
Qed.
#[local] Hint Resolve hold_eTT : tauto.
Lemma hold_eFF : forall k, hold k (eNOT k (eFF k)).
Proof.
intros k; destruct k ; simpl;auto.
Qed.
#[local] Hint Resolve hold_eFF : tauto.
Lemma hold_eAND : forall k r1 r2, hold k (eAND k r1 r2) <-> (hold k r1 /\ hold k r2).
Proof.
intros k; destruct k ; simpl.
-
intros.
apply iff_refl.
-
apply andb_true_iff.
Qed.
Lemma hold_eOR : forall k r1 r2, hold k (eOR k r1 r2) <-> (hold k r1 \/ hold k r2).
Proof.
intros k; destruct k ; simpl.
-
intros.
apply iff_refl.
-
apply orb_true_iff.
Qed.
Lemma hold_eNOT : forall k e, hold k (eNOT k e) <-> not (hold k e).
Proof.
intros k; destruct k ; simpl.
-
intros.
apply iff_refl.
-
intros e.
unfold is_true.
rewrite negb_true_iff.
destruct e ; intuition congruence.
Qed.
Lemma hold_eIMPL : forall k e1 e2, hold k (eIMPL k e1 e2) <-> (hold k e1 -> hold k e2).
Proof.
intros k; destruct k ; simpl.
-
intros.
apply iff_refl.
-
intros e1 e2.
unfold is_true.
destruct e1,e2 ; simpl ; intuition congruence.
Qed.
Lemma hold_eIFF : forall k e1 e2, hold k (eIFF k e1 e2) <-> (hold k e1 <-> hold k e2).
Proof.
intros k; destruct k ; simpl.
-
intros.
apply iff_refl.
-
intros e1 e2.
unfold is_true.
rewrite eqb_true_iff.
destruct e1,e2 ; simpl ; intuition congruence.
Qed.
Lemma xcnf_impl : forall (k: kind) (f1 : GFormula k) (o : option unit) (f2 : GFormula k) (IHf1 : forall (pol : bool) (env : Env), eval_cnf env (xcnf pol f1) -> hold k (eval_f e_rtyp (eval env) (if pol then f1 else NOT f1))) (IHf2 : forall (pol : bool) (env : Env), eval_cnf env (xcnf pol f2) -> hold k (eval_f e_rtyp (eval env) (if pol then f2 else NOT f2))), forall (pol : bool) (env : Env), eval_cnf env (xcnf pol (IMPL f1 o f2)) -> hold k (eval_f e_rtyp (eval env) (if pol then IMPL f1 o f2 else NOT (IMPL f1 o f2))).
Proof.
simpl; intros k f1 o f2 IHf1 IHf2 pol env H.
unfold mk_impl in H.
destruct pol.
+
simpl.
rewrite hold_eIMPL.
intro.
rewrite or_cnf_opt_correct in H.
rewrite or_cnf_correct in H.
destruct H as [H | H].
*
generalize (IHf1 _ _ H).
simpl in *.
rewrite hold_eNOT.
tauto.
*
generalize (IHf2 _ _ H).
auto.
+
(* pol = false *)
rewrite eval_cnf_and_opt in H.
unfold and_cnf in H.
simpl in H.
rewrite eval_cnf_app in H.
destruct H as [H0 H1].
generalize (IHf1 _ _ H0).
generalize (IHf2 _ _ H1).
simpl.
rewrite ! hold_eNOT.
rewrite ! hold_eIMPL.
tauto.
Qed.
Lemma hold_eIFF_IMPL : forall k e1 e2, hold k (eIFF k e1 e2) <-> (hold k (eAND k (eIMPL k e1 e2) (eIMPL k e2 e1))).
Proof.
intros.
rewrite hold_eIFF.
rewrite hold_eAND.
rewrite! hold_eIMPL.
tauto.
Qed.
Lemma hold_eEQ : forall e1 e2, hold isBool (eIFF isBool e1 e2) <-> e1 = e2.
Proof.
simpl.
intros e1 e2; destruct e1,e2 ; simpl ; intuition congruence.
Qed.
Lemma xcnf_iff : forall (k : kind) (f1 f2 : @GFormula Term rtyp Annot unit k) (IHf1 : forall (pol : bool) (env : Env), eval_cnf env (xcnf pol f1) -> hold k (eval_f e_rtyp (eval env) (if pol then f1 else NOT f1))) (IHf2 : forall (pol : bool) (env : Env), eval_cnf env (xcnf pol f2) -> hold k (eval_f e_rtyp (eval env) (if pol then f2 else NOT f2))), forall (pol : bool) (env : Env), eval_cnf env (xcnf pol (IFF f1 f2)) -> hold k (eval_f e_rtyp (eval env) (if pol then IFF f1 f2 else NOT (IFF f1 f2))).
Proof.
simpl.
intros k f1 f2 IHf1 IHf2 pol env H.
rewrite mk_iff_is_bool in H.
unfold mk_iff in H.
destruct pol; rewrite or_cnf_opt_correct in H; rewrite or_cnf_correct in H; rewrite! eval_cnf_and_opt in H; unfold and_cnf in H; rewrite! eval_cnf_app in H; generalize (IHf1 false env); generalize (IHf1 true env); generalize (IHf2 false env); generalize (IHf2 true env); simpl.
-
rewrite hold_eIFF_IMPL.
rewrite hold_eAND.
rewrite! hold_eIMPL.
rewrite! hold_eNOT.
tauto.
-
rewrite! hold_eNOT.
rewrite hold_eIFF_IMPL.
rewrite hold_eAND.
rewrite! hold_eIMPL.
tauto.
Qed.
Lemma xcnf_correct : forall (k: kind) (f : @GFormula Term rtyp Annot unit k) pol env, eval_cnf env (xcnf pol f) -> hold k (eval_f e_rtyp (eval env) (if pol then f else NOT f)).
Proof.
intros k f; induction f as [| | | |? ? IHf1 ? IHf2|? ? IHf1 ? IHf2|? ? IHf |? ? IHf1 ? ? IHf2|? ? IHf1 f2 IHf2|f1 IHf1 f2 IHf2]; intros pol env H.
-
(* TT *)
unfold eval_cnf.
simpl.
destruct pol ; intros; simpl; auto with tauto.
rewrite eval_cnf_ff in H.
tauto.
-
(* FF *)
destruct pol ; simpl in *; intros; auto with tauto.
+
rewrite eval_cnf_ff in H.
tauto.
-
(* P *)
simpl.
destruct pol ; intros ;simpl.
+
rewrite eval_cnf_ff in H.
tauto.
+
rewrite eval_cnf_ff in H.
tauto.
-
(* A *)
simpl.
destruct pol ; simpl.
+
intros.
eapply normalise_correct ; eauto.
+
(* A 2 *)
intros.
eapply negate_correct ; eauto.
-
(* AND *)
destruct pol ; simpl in H.
+
(* pol = true *)
intros.
rewrite eval_cnf_and_opt in H.
unfold and_cnf in H.
rewrite eval_cnf_app in H.
destruct H as [H H0].
apply hold_eAND; split.
*
apply (IHf1 _ _ H).
*
apply (IHf2 _ _ H0).
+
(* pol = false *)
intros.
apply hold_eNOT.
rewrite hold_eAND.
rewrite or_cnf_opt_correct in H.
rewrite or_cnf_correct in H.
destruct H as [H | H].
*
generalize (IHf1 false env H).
simpl.
rewrite hold_eNOT.
tauto.
*
generalize (IHf2 false env H).
simpl.
rewrite hold_eNOT.
tauto.
-
(* OR *)
simpl in H.
destruct pol.
+
(* pol = true *)
intros.
unfold mk_or in H.
rewrite or_cnf_opt_correct in H.
rewrite or_cnf_correct in H.
destruct H as [H | H].
*
generalize (IHf1 _ env H).
simpl.
rewrite hold_eOR.
tauto.
*
generalize (IHf2 _ env H).
simpl.
rewrite hold_eOR.
tauto.
+
(* pol = true *)
intros.
unfold mk_or in H.
rewrite eval_cnf_and_opt in H.
unfold and_cnf.
rewrite eval_cnf_app in H.
destruct H as [H0 H1].
simpl.
generalize (IHf1 _ _ H0).
generalize (IHf2 _ _ H1).
simpl.
rewrite ! hold_eNOT.
rewrite ! hold_eOR.
tauto.
-
(**)
simpl.
destruct pol ; simpl.
+
intros.
apply (IHf false) ; auto.
+
intros.
generalize (IHf _ _ H).
rewrite ! hold_eNOT.
tauto.
-
(* IMPL *)
apply xcnf_impl; auto.
-
apply xcnf_iff ; auto.
-
simpl in H.
destruct (is_bool f2) as [b|] eqn:EQ.
+
apply is_bool_inv in EQ.
destruct b; subst; intros; apply IHf1 in H; destruct pol ; simpl in * ; auto.
*
unfold is_true in H.
rewrite negb_true_iff in H.
congruence.
*
unfold is_true in H.
rewrite negb_true_iff in H.
congruence.
*
unfold is_true in H.
congruence.
+
intros.
rewrite <- mk_iff_is_bool in H.
apply xcnf_iff in H; auto.
simpl in H.
destruct pol ; simpl in *.
*
rewrite <- hold_eEQ.
simpl; auto.
*
rewrite <- hold_eEQ.
simpl; auto.
unfold is_true in *.
rewrite negb_true_iff in H.
congruence.
Qed.
Variable Witness : Type.
Variable checker : list (Term'*Annot) -> Witness -> bool.
Variable checker_sound : forall t w, checker t w = true -> forall env, make_impl (eval_tt env) t False.
Fixpoint cnf_checker (f : cnf) (l : list Witness) {struct f}: bool := match f with | nil => true | e::f => match l with | nil => false | c::l => match checker e c with | true => cnf_checker f l | _ => false end end end.
Lemma cnf_checker_sound : forall t w, cnf_checker t w = true -> forall env, eval_cnf env t.
Proof.
unfold eval_cnf.
intros t; induction t as [|a t IHt].
-
(* bc *)
simpl.
auto.
-
(* ic *)
simpl.
intros w; destruct w as [|w ?].
+
intros ; discriminate.
+
case_eq (checker a w) ; intros H H0 env ** ; try discriminate.
generalize (@checker_sound _ _ H env).
generalize (IHt _ H0 env) ; intros H1 H2.
destruct t.
*
red ; intro.
rewrite <- make_conj_impl in H2.
tauto.
*
rewrite <- make_conj_impl in H2.
tauto.
Qed.
Definition tauto_checker (f:@GFormula Term rtyp Annot unit isProp) (w:list Witness) : bool := cnf_checker (xcnf true f) w.
Lemma tauto_checker_sound : forall t w, tauto_checker t w = true -> forall env, eval_f e_rtyp (eval env) t.
Proof.
unfold tauto_checker.
intros t w H env.
change (eval_f e_rtyp (eval env) t) with (eval_f e_rtyp (eval env) (if true then t else TT isProp)).
apply (xcnf_correct t true).
eapply cnf_checker_sound ; eauto.
Qed.
Definition eval_bf {A : Type} (ea : forall (k: kind), A -> rtyp k) (k: kind) (f: BFormula A k) := eval_f e_rtyp ea f.
Lemma eval_bf_map : forall T U (fct: T-> U) env (k: kind) (f:BFormula T k) , eval_bf env (map_bformula fct f) = eval_bf (fun b x => env b (fct x)) f.
Proof.
intros T U fct env k f; induction f as [| | | |? ? IHf1 ? IHf2|? ? IHf1 ? IHf2|? ? IHf |? ? IHf1 ? ? IHf2|? ? IHf1 ? IHf2|? IHf1 ? IHf2]; simpl ; try (rewrite IHf1 ; rewrite IHf2) ; auto.
rewrite <- IHf.
auto.
Qed.
End S.
(* Local Variables: *) (* coding: utf-8 *) (* End: *)