Timings for EnvRing.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./micromega/EnvRing.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./micromega/EnvRing.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* F. Besson: to evaluate polynomials, the original code is using a list. For big polynomials, this is inefficient -- linear access. I have modified the code to use binary trees -- logarithmic access. *)
Set Implicit Arguments.
Require Import Setoid Morphisms Env BinPos BinNat BinInt.
Require Export Ring_theory.
Local Open Scope positive_scope.
Import RingSyntax.
(** Definition of polynomial expressions *)
#[universes(template)] Inductive PExpr {C} : Type := | PEc : C -> PExpr | PEX : positive -> PExpr | PEadd : PExpr -> PExpr -> PExpr | PEsub : PExpr -> PExpr -> PExpr | PEmul : PExpr -> PExpr -> PExpr | PEopp : PExpr -> PExpr | PEpow : PExpr -> N -> PExpr.
Arguments PExpr : clear implicits.
Register PEc as micromega.PExpr.PEc.
Register PEX as micromega.PExpr.PEX.
Register PEadd as micromega.PExpr.PEadd.
Register PEsub as micromega.PExpr.PEsub.
Register PEmul as micromega.PExpr.PEmul.
Register PEopp as micromega.PExpr.PEopp.
Register PEpow as micromega.PExpr.PEpow.
(* Definition of multivariable polynomials with coefficients in C : Type [Pol] represents [X1 ... Xn]. The representation is Horner's where a [n] variable polynomial (C[X1..Xn]) is seen as a polynomial on [X1] which coefficients are polynomials with [n-1] variables (C[X2..Xn]). There are several optimisations to make the repr compacter: - [Pc c] is the constant polynomial of value c == c*X1^0*..*Xn^0 - [Pinj j Q] is a polynomial constant w.r.t the [j] first variables. variable indices are shifted of j in Q. == X1^0 *..* Xj^0 * Q{X1 <- Xj+1;..; Xn-j <- Xn} - [PX P i Q] is an optimised Horner form of P*X^i + Q with P not the null polynomial == P * X1^i + Q{X1 <- X2; ..; Xn-1 <- Xn} In addition: - polynomials of the form (PX (PX P i (Pc 0)) j Q) are forbidden since they can be represented by the simpler form (PX P (i+j) Q) - (Pinj i (Pinj j P)) is (Pinj (i+j) P) - (Pinj i (Pc c)) is (Pc c) *)
#[universes(template)] Inductive Pol {C} : Type := | Pc : C -> Pol | Pinj : positive -> Pol -> Pol | PX : Pol -> positive -> Pol -> Pol.
Arguments Pol : clear implicits.
Register Pc as micromega.Pol.Pc.
Register Pinj as micromega.Pol.Pinj.
Register PX as micromega.Pol.PX.
Section MakeRingPol.
(* Ring elements *)
Variable R:Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
Variable req : R -> R -> Prop.
(* Ring properties *)
Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
(* Coefficients *)
Variable C: Type.
Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
Variable phi : C -> R.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi.
(* Power coefficients *)
Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
(* R notations *)
Notation "0" := rO.
Notation "1" := rI.
Infix "+" := radd.
Infix "*" := rmul.
Infix "-" := rsub.
Notation "- x" := (ropp x).
Infix "==" := req.
Infix "^" := (pow_pos rmul).
(* C notations *)
Infix "+!" := cadd.
Infix "*!" := cmul.
Infix "-! " := csub.
Notation "-! x" := (copp x).
Infix "?=!" := ceqb.
Notation "[ x ]" := (phi x).
(* Useful tactics *)
Add Morphism radd with signature (req ==> req ==> req) as radd_ext.
Proof.
exact (Radd_ext Reqe).
Qed.
Add Morphism rmul with signature (req ==> req ==> req) as rmul_ext.
Proof.
exact (Rmul_ext Reqe).
Qed.
Add Morphism ropp with signature (req ==> req) as ropp_ext.
Proof.
exact (Ropp_ext Reqe).
Qed.
Add Morphism rsub with signature (req ==> req ==> req) as rsub_ext.
Proof.
exact (ARsub_ext Rsth Reqe ARth).
Qed.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.
Ltac add_permut_rec t := match t with | ?x + ?y => add_permut_rec y || add_permut_rec x | _ => add_push t; apply (Radd_ext Reqe); [|reflexivity] end.
Ltac add_permut := repeat (reflexivity || match goal with |- ?t == _ => add_permut_rec t end).
Ltac mul_permut_rec t := match t with | ?x * ?y => mul_permut_rec y || mul_permut_rec x | _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity] end.
Ltac mul_permut := repeat (reflexivity || match goal with |- ?t == _ => mul_permut_rec t end).
Notation PExpr := (PExpr C).
Notation Pol := (Pol C).
Implicit Types pe : PExpr.
Implicit Types P : Pol.
Definition P0 := Pc cO.
Definition P1 := Pc cI.
Fixpoint Peq (P P' : Pol) {struct P'} : bool := match P, P' with | Pc c, Pc c' => c ?=! c' | Pinj j Q, Pinj j' Q' => match j ?= j' with | Eq => Peq Q Q' | _ => false end | PX P i Q, PX P' i' Q' => match i ?= i' with | Eq => if Peq P P' then Peq Q Q' else false | _ => false end | _, _ => false end.
Infix "?==" := Peq.
Definition mkPinj j P := match P with | Pc _ => P | Pinj j' Q => Pinj (j + j') Q | _ => Pinj j P end.
Definition mkPinj_pred j P := match j with | xH => P | xO j => Pinj (Pos.pred_double j) P | xI j => Pinj (xO j) P end.
Definition mkPX P i Q := match P with | Pc c => if c ?=! cO then mkPinj xH Q else PX P i Q | Pinj _ _ => PX P i Q | PX P' i' Q' => if Q' ?== P0 then PX P' (i' + i) Q else PX P i Q end.
Definition mkXi i := PX P1 i P0.
Definition mkX := mkXi 1.
(** Opposite of addition *)
Fixpoint Popp (P:Pol) : Pol := match P with | Pc c => Pc (-! c) | Pinj j Q => Pinj j (Popp Q) | PX P i Q => PX (Popp P) i (Popp Q) end.
Notation "-- P" := (Popp P).
(** Addition et subtraction *)
Fixpoint PaddC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 +! c) | Pinj j Q => Pinj j (PaddC Q c) | PX P i Q => PX P i (PaddC Q c) end.
Fixpoint PsubC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 -! c) | Pinj j Q => Pinj j (PsubC Q c) | PX P i Q => PX P i (PsubC Q c) end.
Section PopI.
Variable Pop : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PaddI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC Q c) | Pinj j' Q' => match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PaddI k Q') end | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) | xO j => PX P i (PaddI (Pos.pred_double j) Q') | xI j => PX P i (PaddI (xO j) Q') end end.
Fixpoint PsubI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC (--Q) c) | Pinj j' Q' => match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PsubI k Q') end | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) | xO j => PX P i (PsubI (Pos.pred_double j) Q') | xI j => PX P i (PsubI (xO j) Q') end end.
Variable P' : Pol.
Fixpoint PaddX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX P' i' P | Pinj j Q' => match j with | xH => PX P' i' Q' | xO j => PX P' i' (Pinj (Pos.pred_double j) Q') | xI j => PX P' i' (Pinj (xO j) Q') end | PX P i Q' => match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PaddX k P) i Q' end end.
Fixpoint PsubX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX (--P') i' P | Pinj j Q' => match j with | xH => PX (--P') i' Q' | xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q') | xI j => PX (--P') i' (Pinj (xO j) Q') end | PX P i Q' => match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PsubX k P) i Q' end end.
End PopI.
Fixpoint Padd (P P': Pol) {struct P'} : Pol := match P' with | Pc c' => PaddC P c' | Pinj j' Q' => PaddI Padd Q' j' P | PX P' i' Q' => match P with | Pc c => PX P' i' (PaddC Q' c) | Pinj j Q => match j with | xH => PX P' i' (Padd Q Q') | xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q') | xI j => PX P' i' (Padd (Pinj (xO j) Q) Q') end | PX P i Q => match Z.pos_sub i i' with | Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q') | Z0 => mkPX (Padd P P') i (Padd Q Q') | Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q') end end end.
Infix "++" := Padd.
Fixpoint Psub (P P': Pol) {struct P'} : Pol := match P' with | Pc c' => PsubC P c' | Pinj j' Q' => PsubI Psub Q' j' P | PX P' i' Q' => match P with | Pc c => PX (--P') i' (*(--(PsubC Q' c))*) (PaddC (--Q') c) | Pinj j Q => match j with | xH => PX (--P') i' (Psub Q Q') | xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q') | xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q') end | PX P i Q => match Z.pos_sub i i' with | Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q') | Z0 => mkPX (Psub P P') i (Psub Q Q') | Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q') end end end.
Infix "--" := Psub.
(** Multiplication *)
Fixpoint PmulC_aux (P:Pol) (c:C) : Pol := match P with | Pc c' => Pc (c' *! c) | Pinj j Q => mkPinj j (PmulC_aux Q c) | PX P i Q => mkPX (PmulC_aux P c) i (PmulC_aux Q c) end.
Definition PmulC P c := if c ?=! cO then P0 else if c ?=! cI then P else PmulC_aux P c.
Section PmulI.
Variable Pmul : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PmulI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PmulC Q c) | Pinj j' Q' => match Z.pos_sub j' j with | Zpos k => mkPinj j (Pmul (Pinj k Q') Q) | Z0 => mkPinj j (Pmul Q' Q) | Zneg k => mkPinj j' (PmulI k Q') end | PX P' i' Q' => match j with | xH => mkPX (PmulI xH P') i' (Pmul Q' Q) | xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q') | xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q') end end.
End PmulI.
Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol := match P'' with | Pc c => PmulC P c | Pinj j' Q' => PmulI Pmul Q' j' P | PX P' i' Q' => match P with | Pc c => PmulC P'' c | Pinj j Q => let QQ' := match j with | xH => Pmul Q Q' | xO j => Pmul (Pinj (Pos.pred_double j) Q) Q' | xI j => Pmul (Pinj (xO j) Q) Q' end in mkPX (Pmul P P') i' QQ' | PX P i Q=> let QQ' := Pmul Q Q' in let PQ' := PmulI Pmul Q' xH P in let QP' := Pmul (mkPinj xH Q) P' in let PP' := Pmul P P' in (mkPX (mkPX PP' i P0 ++ QP') i' P0) ++ mkPX PQ' i QQ' end end.
Infix "**" := Pmul.
Fixpoint Psquare (P:Pol) : Pol := match P with | Pc c => Pc (c *! c) | Pinj j Q => Pinj j (Psquare Q) | PX P i Q => let twoPQ := Pmul P (mkPinj xH (PmulC Q (cI +! cI))) in let Q2 := Psquare Q in let P2 := Psquare P in mkPX (mkPX P2 i P0 ++ twoPQ) i Q2 end.
(** Monomial **) (** A monomial is X1^k1...Xi^ki. Its representation is a simplified version of the polynomial representation: - [mon0] correspond to the polynom [P1]. - [(zmon j M)] corresponds to [(Pinj j ...)], i.e. skip j variable indices. - [(vmon i M)] is X^i*M with X the current variable, its corresponds to (PX P1 i ...)] *)
Inductive Mon: Set := | mon0: Mon | zmon: positive -> Mon -> Mon | vmon: positive -> Mon -> Mon.
Definition mkZmon j M := match M with mon0 => mon0 | _ => zmon j M end.
Definition zmon_pred j M := match j with xH => M | _ => mkZmon (Pos.pred j) M end.
Definition mkVmon i M := match M with | mon0 => vmon i mon0 | zmon j m => vmon i (zmon_pred j m) | vmon i' m => vmon (i+i') m end.
Fixpoint MFactor (P: Pol) (M: Mon) : Pol * Pol := match P, M with _, mon0 => (Pc cO, P) | Pc _, _ => (P, Pc cO) | Pinj j1 P1, zmon j2 M1 => match (j1 ?= j2) with Eq => let (R,S) := MFactor P1 M1 in (mkPinj j1 R, mkPinj j1 S) | Lt => let (R,S) := MFactor P1 (zmon (j2 - j1) M1) in (mkPinj j1 R, mkPinj j1 S) | Gt => (P, Pc cO) end | Pinj _ _, vmon _ _ => (P, Pc cO) | PX P1 i Q1, zmon j M1 => let M2 := zmon_pred j M1 in let (R1, S1) := MFactor P1 M in let (R2, S2) := MFactor Q1 M2 in (mkPX R1 i R2, mkPX S1 i S2) | PX P1 i Q1, vmon j M1 => match (i ?= j) with Eq => let (R1,S1) := MFactor P1 (mkZmon xH M1) in (mkPX R1 i Q1, S1) | Lt => let (R1,S1) := MFactor P1 (vmon (j - i) M1) in (mkPX R1 i Q1, S1) | Gt => let (R1,S1) := MFactor P1 (mkZmon xH M1) in (mkPX R1 i Q1, mkPX S1 (i-j) (Pc cO)) end end.
Definition POneSubst (P1: Pol) (M1: Mon) (P2: Pol): option Pol := let (Q1,R1) := MFactor P1 M1 in match R1 with (Pc c) => if c ?=! cO then None else Some (Padd Q1 (Pmul P2 R1)) | _ => Some (Padd Q1 (Pmul P2 R1)) end.
Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) : Pol := match POneSubst P1 M1 P2 with Some P3 => match n with S n1 => PNSubst1 P3 M1 P2 n1 | _ => P3 end | _ => P1 end.
Definition PNSubst (P1: Pol) (M1: Mon) (P2: Pol) (n: nat): option Pol := match POneSubst P1 M1 P2 with Some P3 => match n with S n1 => Some (PNSubst1 P3 M1 P2 n1) | _ => None end | _ => None end.
Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : Pol := match LM1 with cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n | _ => P1 end.
Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : option Pol := match LM1 with cons (M1,P2) LM2 => match PNSubst P1 M1 P2 n with Some P3 => Some (PSubstL1 P3 LM2 n) | None => PSubstL P1 LM2 n end | _ => None end.
Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) : Pol := match PSubstL P1 LM1 n with Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end | _ => P1 end.
(** Evaluation of a polynomial towards R *)
Fixpoint Pphi(l:Env R) (P:Pol) : R := match P with | Pc c => [c] | Pinj j Q => Pphi (jump j l) Q | PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
(** Evaluation of a monomial towards R *)
Fixpoint Mphi(l:Env R) (M: Mon) : R := match M with | mon0 => rI | zmon j M1 => Mphi (jump j l) M1 | vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i end.
Notation "M @@ l" := (Mphi l M) (at level 10, no associativity).
(** Proofs *)
Ltac destr_pos_sub := match goal with |- context [Z.pos_sub ?x ?y] => generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y) end.
Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l.
Proof.
revert P';induction P as [|p P IHP|P2 IHP1 p P3 IHP2]; intro P';destruct P' as [|p0 P'|P'1 p0 P'2];simpl; intros H l; try easy.
-
now apply (morph_eq CRmorph).
-
destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
now rewrite IHP.
-
specialize (IHP1 P'1); specialize (IHP2 P'2).
destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
destruct (P2 ?== P'1); [|easy].
rewrite H in *.
now rewrite IHP1, IHP2.
Qed.
Lemma Peq_spec P P' : BoolSpec (forall l, P@l == P'@l) True (P ?== P').
Proof.
generalize (Peq_ok P P').
destruct (P ?== P'); auto.
Qed.
Lemma Pphi0 l : P0@l == 0.
Proof.
simpl;apply (morph0 CRmorph).
Qed.
Lemma Pphi1 l : P1@l == 1.
Proof.
simpl;apply (morph1 CRmorph).
Qed.
Lemma env_morph p e1 e2 : (forall x, e1 x = e2 x) -> p @ e1 = p @ e2.
Proof.
revert e1 e2.
induction p as [|? ? IHp|? IHp1 ? ? IHp2]; simpl.
-
reflexivity.
-
intros e1 e2 EQ.
apply IHp.
intros.
apply EQ.
-
intros e1 e2 EQ.
f_equal; [f_equal|].
+
now apply IHp1.
+
f_equal.
apply EQ.
+
apply IHp2.
intros; apply EQ.
Qed.
Lemma Pjump_add P i j l : P @ (jump (i + j) l) = P @ (jump j (jump i l)).
Proof.
apply env_morph.
intros.
rewrite <- jump_add.
f_equal.
apply Pos.add_comm.
Qed.
Lemma Pjump_xO_tail P p l : P @ (jump (xO p) (tail l)) = P @ (jump (xI p) l).
Proof.
apply env_morph.
intros.
now jump_simpl.
Qed.
Lemma Pjump_pred_double P p l : P @ (jump (Pos.pred_double p) (tail l)) = P @ (jump (xO p) l).
Proof.
apply env_morph.
intros.
rewrite jump_pred_double.
now jump_simpl.
Qed.
Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l).
Proof.
destruct P;simpl;rsimpl.
now rewrite Pjump_add.
Qed.
Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j.
Proof.
rewrite Pos.add_comm.
apply (pow_pos_add Rsth (Rmul_ext Reqe) (ARmul_assoc ARth)).
Qed.
Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c').
Proof.
generalize (morph_eq CRmorph c c').
destruct (c ?=! c'); auto.
Qed.
Lemma mkPX_ok l P i Q : (mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l).
Proof.
unfold mkPX.
destruct P.
-
case ceqb_spec; intros H; simpl; try reflexivity.
rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl.
-
reflexivity.
-
case Peq_spec; intros H; simpl; try reflexivity.
rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl.
Qed.
Hint Rewrite Pphi0 Pphi1 mkPinj_ok mkPX_ok (morph0 CRmorph) (morph1 CRmorph) (morph0 CRmorph) (morph_add CRmorph) (morph_mul CRmorph) (morph_sub CRmorph) (morph_opp CRmorph) : Esimpl.
(* Quicker than autorewrite with Esimpl :-) *)
Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl.
Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c].
Proof.
revert l;induction P as [| |? ? ? ? IHP2];simpl;intros;Esimpl;trivial.
rewrite IHP2;rsimpl.
Qed.
Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c].
Proof.
revert l;induction P as [|? ? IHP|? ? ? ? IHP2];simpl;intros.
-
Esimpl.
-
rewrite IHP;rsimpl.
-
rewrite IHP2;rsimpl.
Qed.
Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c].
Proof.
revert l;induction P as [| |? IHP1 ? ? IHP2];simpl;intros;Esimpl;trivial.
rewrite IHP1, IHP2;rsimpl.
add_permut.
mul_permut.
Qed.
Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c].
Proof.
unfold PmulC.
case ceqb_spec; intros H.
-
rewrite H; Esimpl.
-
case ceqb_spec; intros H'.
+
rewrite H'; Esimpl.
+
apply PmulC_aux_ok.
Qed.
Lemma Popp_ok P l : (--P)@l == - P@l.
Proof.
revert l;induction P as [|? ? IHP|? IHP1 ? ? IHP2];simpl;intros.
-
Esimpl.
-
apply IHP.
-
rewrite IHP1, IHP2;rsimpl.
Qed.
Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl.
Lemma PaddX_ok P' P k l : (forall P l, (P++P')@l == P@l + P'@l) -> (PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k.
Proof.
intros IHP'.
revert k l.
induction P as [|p|? IHP1];simpl;intros.
-
add_permut.
-
destruct p; simpl; rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut.
-
destr_pos_sub; intros ->;Esimpl.
+
rewrite IHP';rsimpl.
add_permut.
+
rewrite IHP', pow_pos_add;simpl;Esimpl.
add_permut.
+
rewrite IHP1, pow_pos_add;rsimpl.
add_permut.
Qed.
Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l.
Proof.
revert P l; induction P' as [|p P' IHP'|? IHP'1 ? ? IHP'2];simpl;intros P l;Esimpl.
-
revert p l; induction P as [|? P IHP|? IHP1 p ? IHP2];simpl;intros p0 l.
+
Esimpl; add_permut.
+
destr_pos_sub; intros ->;Esimpl.
*
now rewrite IHP'.
*
rewrite IHP';Esimpl.
now rewrite Pjump_add.
*
rewrite IHP.
now rewrite Pjump_add.
+
destruct p0;simpl.
*
rewrite IHP2;simpl.
rsimpl.
rewrite Pjump_xO_tail.
Esimpl.
*
rewrite IHP2;simpl.
rewrite Pjump_pred_double.
rsimpl.
*
rewrite IHP'.
rsimpl.
-
destruct P as [|p0|];simpl.
+
Esimpl.
add_permut.
+
destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
*
rewrite Pjump_xO_tail.
rsimpl.
add_permut.
*
rewrite Pjump_pred_double.
rsimpl.
add_permut.
*
rsimpl.
unfold tail.
add_permut.
+
destr_pos_sub; intros ->; Esimpl.
*
rewrite IHP'1, IHP'2;rsimpl.
add_permut.
*
rewrite IHP'1, IHP'2;simpl;Esimpl.
rewrite pow_pos_add;rsimpl.
add_permut.
*
rewrite PaddX_ok by trivial; rsimpl.
rewrite IHP'2, pow_pos_add; rsimpl.
add_permut.
Qed.
Lemma PsubX_ok P' P k l : (forall P l, (P--P')@l == P@l - P'@l) -> (PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k.
Proof.
intros IHP'.
revert k l.
induction P as [|p|? IHP1];simpl;intros.
-
rewrite Popp_ok;rsimpl; add_permut.
-
destruct p; simpl; rewrite Popp_ok;rsimpl; rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut.
-
destr_pos_sub; intros ->; Esimpl.
+
rewrite IHP';rsimpl.
add_permut.
+
rewrite IHP', pow_pos_add;simpl;Esimpl.
add_permut.
+
rewrite IHP1, pow_pos_add;rsimpl.
add_permut.
Qed.
Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l.
Proof.
revert P l; induction P' as [|p P' IHP'|? IHP'1 ? ? IHP'2];simpl;intros P l;Esimpl.
-
revert p l; induction P as [|? ? IHP|? IHP1 ? ? IHP2];simpl;intros p0 l.
+
Esimpl; add_permut.
+
destr_pos_sub; intros ->;Esimpl.
*
rewrite IHP';rsimpl.
*
rewrite IHP';Esimpl.
now rewrite Pjump_add.
*
rewrite IHP.
now rewrite Pjump_add.
+
destruct p0;simpl.
*
rewrite IHP2;simpl.
rsimpl.
rewrite Pjump_xO_tail.
Esimpl.
*
rewrite IHP2;simpl.
rewrite Pjump_pred_double.
rsimpl.
*
rewrite IHP'.
rsimpl.
-
destruct P as [|p0|];simpl.
+
Esimpl; add_permut.
+
destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
*
rewrite Pjump_xO_tail.
rsimpl.
add_permut.
*
rewrite Pjump_pred_double.
rsimpl.
add_permut.
*
rsimpl.
unfold tail.
add_permut.
+
destr_pos_sub; intros ->; Esimpl.
*
rewrite IHP'1, IHP'2;rsimpl.
add_permut.
*
rewrite IHP'1, IHP'2;simpl;Esimpl.
rewrite pow_pos_add;rsimpl.
add_permut.
*
rewrite PsubX_ok by trivial;rsimpl.
rewrite IHP'2, pow_pos_add;rsimpl.
add_permut.
Qed.
Lemma PmulI_ok P' : (forall P l, (Pmul P P') @ l == P @ l * P' @ l) -> forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
Proof.
intros IHP' P.
induction P as [|? ? IHP|? IHP1 ? ? IHP2];simpl;intros p0 l.
-
Esimpl; mul_permut.
-
destr_pos_sub; intros ->;Esimpl.
+
now rewrite IHP'.
+
now rewrite IHP', Pjump_add.
+
now rewrite IHP, Pjump_add.
-
destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl.
+
rewrite Pjump_xO_tail.
f_equiv.
mul_permut.
+
rewrite Pjump_pred_double.
f_equiv.
mul_permut.
+
rewrite IHP'.
f_equiv.
mul_permut.
Qed.
Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l.
Proof.
revert P l;induction P' as [| |? IHP'1 ? ? IHP'2];simpl;intros P l.
-
apply PmulC_ok.
-
apply PmulI_ok;trivial.
-
destruct P as [|p0|].
+
rewrite (ARmul_comm ARth).
Esimpl.
+
Esimpl.
rewrite IHP'1;Esimpl.
f_equiv.
destruct p0;rewrite IHP'2;Esimpl.
*
now rewrite Pjump_xO_tail.
*
rewrite Pjump_pred_double; Esimpl.
+
rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok, !IHP'1, !IHP'2, PmulI_ok; trivial.
simpl.
Esimpl.
unfold tail.
add_permut; f_equiv; mul_permut.
Qed.
Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l.
Proof.
revert l;induction P as [|? ? IHP|P2 IHP1 p ? IHP2];simpl;intros l;Esimpl.
-
apply IHP.
-
rewrite Padd_ok, Pmul_ok;Esimpl.
rewrite IHP1, IHP2.
mul_push ((hd l)^p).
now mul_push (P2@l).
Qed.
Lemma Mphi_morph M e1 e2 : (forall x, e1 x = e2 x) -> M @@ e1 = M @@ e2.
Proof.
revert e1 e2; induction M as [|? ? IHM|? ? IHM]; simpl; intros e1 e2 EQ; trivial.
-
apply IHM.
intros; apply EQ.
-
f_equal.
*
apply IHM.
intros; apply EQ.
*
f_equal.
apply EQ.
Qed.
Lemma Mjump_xO_tail M p l : M @@ (jump (xO p) (tail l)) = M @@ (jump (xI p) l).
Proof.
apply Mphi_morph.
intros.
now jump_simpl.
Qed.
Lemma Mjump_pred_double M p l : M @@ (jump (Pos.pred_double p) (tail l)) = M @@ (jump (xO p) l).
Proof.
apply Mphi_morph.
intros.
rewrite jump_pred_double.
now jump_simpl.
Qed.
Lemma Mjump_add M i j l : M @@ (jump (i + j) l) = M @@ (jump j (jump i l)).
Proof.
apply Mphi_morph.
intros.
now rewrite <- jump_add, Pos.add_comm.
Qed.
Lemma mkZmon_ok M j l : (mkZmon j M) @@ l == (zmon j M) @@ l.
Proof.
destruct M; simpl; rsimpl.
Qed.
Lemma zmon_pred_ok M j l : (zmon_pred j M) @@ (tail l) == (zmon j M) @@ l.
Proof.
destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl.
-
now rewrite Mjump_xO_tail.
-
rewrite Mjump_pred_double; rsimpl.
Qed.
Lemma mkVmon_ok M i l : (mkVmon i M)@@l == M@@l * (hd l)^i.
Proof.
destruct M;simpl;intros;rsimpl.
-
rewrite zmon_pred_ok;simpl;rsimpl.
-
rewrite pow_pos_add;rsimpl.
Qed.
Ltac destr_mfactor R S := match goal with | H : context [MFactor ?P _] |- context [MFactor ?P ?M] => specialize (H M); destruct MFactor as (R,S) end.
Lemma Mphi_ok P M l : let (Q,R) := MFactor P M in P@l == Q@l + M@@l * R@l.
Proof.
revert M l; induction P as [|? ? IHP|? IHP1 ? ? IHP2]; intros M; destruct M; intros l; simpl; auto; Esimpl.
-
case Pos.compare_spec; intros He; simpl.
*
destr_mfactor R1 S1.
now rewrite IHP, He, !mkPinj_ok.
*
destr_mfactor R1 S1.
rewrite IHP; simpl.
now rewrite !mkPinj_ok, <- Mjump_add, Pos.add_comm, Pos.sub_add.
*
Esimpl.
-
destr_mfactor R1 S1.
destr_mfactor R2 S2.
rewrite IHP1, IHP2, !mkPX_ok, zmon_pred_ok; simpl; rsimpl.
add_permut.
-
case Pos.compare_spec; intros He; simpl; destr_mfactor R1 S1; rewrite ?He, IHP1, mkPX_ok, ?mkZmon_ok; simpl; rsimpl; unfold tail; add_permut; mul_permut.
*
rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl.
*
rewrite mkPX_ok.
simpl.
Esimpl.
mul_permut.
rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl.
Qed.
Lemma POneSubst_ok P1 M1 P2 P3 l : POneSubst P1 M1 P2 = Some P3 -> M1@@l == P2@l -> P1@l == P3@l.
Proof.
unfold POneSubst.
assert (H := Mphi_ok P1).
destr_mfactor R1 S1.
rewrite H; clear H.
intros EQ EQ'.
replace P3 with (R1 ++ P2 ** S1).
-
rewrite EQ', Padd_ok, Pmul_ok; rsimpl.
-
revert EQ.
destruct S1; try now injection 1.
case ceqb_spec; now inversion 2.
Qed.
Lemma PNSubst1_ok n P1 M1 P2 l : M1@@l == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l.
Proof.
revert P1.
induction n as [|n IHn]; simpl; intros P1; generalize (POneSubst_ok P1 M1 P2); destruct POneSubst; intros; rewrite <- ?IHn; auto; reflexivity.
Qed.
Lemma PNSubst_ok n P1 M1 P2 l P3 : PNSubst P1 M1 P2 n = Some P3 -> M1@@l == P2@l -> P1@l == P3@l.
Proof.
unfold PNSubst.
assert (H := POneSubst_ok P1 M1 P2); destruct POneSubst; try discriminate.
destruct n; inversion_clear 1.
intros.
rewrite <- PNSubst1_ok; auto.
Qed.
Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) : Prop := match LM1 with | cons (M1,P2) LM2 => (M1@@l == P2@l) /\ MPcond LM2 l | _ => True end.
Lemma PSubstL1_ok n LM1 P1 l : MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Proof.
revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros.
-
reflexivity.
-
rewrite <- IH by intuition.
now apply PNSubst1_ok.
Qed.
Lemma PSubstL_ok n LM1 P1 P2 l : PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
Proof.
revert P1.
induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros P3 H **.
-
discriminate.
-
assert (H':=PNSubst_ok n P3 M2 P2').
destruct PNSubst.
*
injection H as [= <-].
rewrite <- PSubstL1_ok; intuition.
*
now apply IH.
Qed.
Lemma PNSubstL_ok m n LM1 P1 l : MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
Proof.
revert LM1 P1.
induction m as [|m IHm]; simpl; intros LM1 P2 **; assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL; auto; try reflexivity.
rewrite <- IHm; auto.
Qed.
(** evaluation of polynomial expressions towards R *)
Definition mk_X j := mkPinj_pred j mkX.
(** evaluation of polynomial expressions towards R *)
Fixpoint PEeval (l:Env R) (pe:PExpr) : R := match pe with | PEc c => phi c | PEX j => nth j l | PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2) | PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2) | PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2) | PEopp pe1 => - (PEeval l pe1) | PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n) end.
(** Correctness proofs *)
Lemma mkX_ok p l : nth p l == (mk_X p) @ l.
Proof.
destruct p;simpl;intros;Esimpl;trivial.
rewrite nth_spec ; auto.
unfold hd.
now rewrite <- nth_pred_double, nth_jump.
Qed.
Hint Rewrite Padd_ok Psub_ok : Esimpl.
Section POWER.
Variable subst_l : Pol -> Pol.
Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol := match p with | xH => subst_l (res ** P) | xO p => Ppow_pos (Ppow_pos res P p) P p | xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P) end.
Definition Ppow_N P n := match n with | N0 => P1 | Npos p => Ppow_pos P1 P p end.
Lemma Ppow_pos_ok l : (forall P, subst_l P@l == P@l) -> forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
Proof.
intros subst_l_ok res P p.
revert res.
induction p as [p IHp|p IHp|];simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp; mul_permut.
Qed.
Lemma Ppow_N_ok l : (forall P, subst_l P@l == P@l) -> forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
Proof.
intros ? P n;destruct n;simpl.
-
reflexivity.
-
rewrite Ppow_pos_ok by trivial.
Esimpl.
Qed.
End POWER.
(** Normalization and rewriting *)
Section NORM_SUBST_REC.
Variable n : nat.
Variable lmp:list (Mon*Pol).
Let subst_l P := PNSubstL P lmp n n.
Let Pmul_subst P1 P2 := subst_l (Pmul P1 P2).
Let Ppow_subst := Ppow_N subst_l.
Fixpoint norm_aux (pe:PExpr) : Pol := match pe with | PEc c => Pc c | PEX j => mk_X j | PEadd (PEopp pe1) pe2 => Psub (norm_aux pe2) (norm_aux pe1) | PEadd pe1 (PEopp pe2) => Psub (norm_aux pe1) (norm_aux pe2) | PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2) | PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2) | PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2) | PEopp pe1 => Popp (norm_aux pe1) | PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n end.
Definition norm_subst pe := subst_l (norm_aux pe).
(** Internally, [norm_aux] is expanded in a large number of cases. To speed-up proofs, we use an alternative definition. *)
Definition get_PEopp pe := match pe with | PEopp pe' => Some pe' | _ => None end.
Lemma norm_aux_PEadd pe1 pe2 : norm_aux (PEadd pe1 pe2) = match get_PEopp pe1, get_PEopp pe2 with | Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1') | None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2') | None, None => (norm_aux pe1) ++ (norm_aux pe2) end.
Proof.
simpl (norm_aux (PEadd _ _)).
destruct pe1; [ | | | | | reflexivity | ]; destruct pe2; simpl get_PEopp; reflexivity.
Qed.
Lemma norm_aux_PEopp pe : match get_PEopp pe with | Some pe' => norm_aux pe = -- (norm_aux pe') | None => True end.
Proof.
now destruct pe.
Qed.
Lemma norm_aux_spec l pe : PEeval l pe == (norm_aux pe)@l.
Proof.
intros.
induction pe as [| |pe1 IHpe1 pe2 IHpe2|? IHpe1 ? IHpe2|? IHpe1 ? IHpe2|? IHpe|? IHpe n0].
-
reflexivity.
-
apply mkX_ok.
-
simpl PEeval.
rewrite IHpe1, IHpe2.
assert (H1 := norm_aux_PEopp pe1).
assert (H2 := norm_aux_PEopp pe2).
rewrite norm_aux_PEadd.
do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut.
-
simpl.
rewrite IHpe1, IHpe2.
Esimpl.
-
simpl.
rewrite IHpe1, IHpe2.
now rewrite Pmul_ok.
-
simpl.
rewrite IHpe.
Esimpl.
-
simpl.
rewrite Ppow_N_ok by reflexivity.
rewrite (rpow_pow_N pow_th).
destruct n0 as [|p]; simpl; Esimpl.
induction p as [p IHp|p IHp|];simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok.
Qed.
End NORM_SUBST_REC.
End MakeRingPol.