Timings for HexadecimalQ.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/HexadecimalQ.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/HexadecimalQ.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** * HexadecimalQ Proofs that conversions between hexadecimal numbers and [Q] are bijections. *)
Require Import Decimal DecimalFacts DecimalPos DecimalN DecimalZ.
Require Import Hexadecimal HexadecimalFacts HexadecimalPos HexadecimalN HexadecimalZ QArith.
Lemma of_IQmake_to_hexadecimal num den : match IQmake_to_hexadecimal num den with | None => True | Some (HexadecimalExp _ _ _) => False | Some (Hexadecimal i f) => of_hexadecimal (Hexadecimal i f) = IQmake (IZ_of_Z num) den end.
Proof.
unfold IQmake_to_hexadecimal.
generalize (Unsigned.nztail_to_hex_uint den).
case Hexadecimal.nztail; intros den' e_den'.
case den'; [now simpl|now simpl| |now simpl..]; clear den'; intro den'.
case den'; [ |now simpl..]; clear den'.
case e_den' as [|e_den']; simpl; injection 1 as ->.
{
now unfold of_hexadecimal; simpl; rewrite app_int_nil_r, HexadecimalZ.of_to.
}
replace (16 ^ _)%positive with (Nat.iter (S e_den') (Pos.mul 16) 1%positive).
2:{
induction e_den' as [|n IHn]; [now simpl| ].
now rewrite SuccNat2Pos.inj_succ, Pos.pow_succ_r, <-IHn.
}
case Nat.ltb_spec; intro He_den'.
-
unfold of_hexadecimal; simpl.
rewrite app_int_del_tail_head; [|now apply Nat.lt_le_incl].
rewrite HexadecimalZ.of_to.
now rewrite nb_digits_del_head_sub; [|now apply Nat.lt_le_incl].
-
unfold of_hexadecimal; simpl.
rewrite nb_digits_iter_D0.
apply f_equal2.
+
apply f_equal, HexadecimalZ.to_int_inj.
rewrite HexadecimalZ.to_of.
rewrite <-(HexadecimalZ.of_to num), HexadecimalZ.to_of.
case (Z.to_hex_int num); clear He_den' num; intro num; simpl.
*
unfold app; simpl.
now rewrite unorm_D0, unorm_iter_D0, unorm_involutive.
*
case (uint_eq_dec (nzhead num) Nil); [|intro Hn].
{
intros->; simpl; unfold app; simpl.
now rewrite unorm_D0, unorm_iter_D0.
}
replace (match nzhead num with Nil => _ | _ => _ end) with (Neg (nzhead num)); [|now revert Hn; case nzhead].
simpl.
rewrite nzhead_iter_D0, nzhead_involutive.
now revert Hn; case nzhead.
+
revert He_den'; case nb_digits as [|n]; [now simpl; rewrite Nat.add_0_r|].
intro Hn.
rewrite Nat.add_succ_r, Nat.sub_add; [|apply le_S_n]; auto.
Qed.
Lemma IZ_of_Z_IZ_to_Z z z' : IZ_to_Z z = Some z' -> IZ_of_Z z' = z.
Proof.
now case z as [| |p|p]; [| injection 1 as <- ..].
Qed.
Lemma of_IQmake_to_hexadecimal' num den : match IQmake_to_hexadecimal' num den with | None => True | Some (HexadecimalExp _ _ _) => False | Some (Hexadecimal i f) => of_hexadecimal (Hexadecimal i f) = IQmake num den end.
Proof.
unfold IQmake_to_hexadecimal'.
case_eq (IZ_to_Z num); [intros num' Hnum'|now simpl].
generalize (of_IQmake_to_hexadecimal num' den).
case IQmake_to_hexadecimal as [d|]; [|now simpl].
case d as [i f|]; [|now simpl].
now rewrite (IZ_of_Z_IZ_to_Z _ _ Hnum').
Qed.
Lemma of_to (q:IQ) : forall d, to_hexadecimal q = Some d -> of_hexadecimal d = q.
Proof.
intro d.
case q as [num den|q q'|q q']; simpl.
-
generalize (of_IQmake_to_hexadecimal' num den).
case IQmake_to_hexadecimal' as [d'|]; [|now simpl].
case d' as [i f|]; [|now simpl].
now intros H; injection 1 as <-.
-
case q as [num den| |]; [|now simpl..].
case q' as [num' den'| |]; [|now simpl..].
case num' as [z p| | |]; [|now simpl..].
case (Z.eq_dec z 2); [intros->|].
2:{
case z; [now simpl| |now simpl]; intro pz'.
case pz'; [intros d0..| ]; [now simpl| |now simpl].
now case d0.
}
case (Pos.eq_dec den' 1%positive); [intros->|now case den'].
generalize (of_IQmake_to_hexadecimal' num den).
case IQmake_to_hexadecimal' as [d'|]; [|now simpl].
case d' as [i f|]; [|now simpl].
intros <-; clear num den.
injection 1 as <-.
unfold of_hexadecimal; simpl.
now unfold Z.of_uint; rewrite DecimalPos.Unsigned.of_to; simpl.
-
case q as [num den| |]; [|now simpl..].
case q' as [num' den'| |]; [|now simpl..].
case num' as [z p| | |]; [|now simpl..].
case (Z.eq_dec z 2); [intros->|].
2:{
case z; [now simpl| |now simpl]; intro pz'.
case pz'; [intros d0..| ]; [now simpl| |now simpl].
now case d0.
}
case (Pos.eq_dec den' 1%positive); [intros->|now case den'].
generalize (of_IQmake_to_hexadecimal' num den).
case IQmake_to_hexadecimal' as [d'|]; [|now simpl].
case d' as [i f|]; [|now simpl].
intros <-; clear num den.
injection 1 as <-.
unfold of_hexadecimal; simpl.
now unfold Z.of_uint; rewrite DecimalPos.Unsigned.of_to; simpl.
Qed.
Definition dnorm (d:hexadecimal) : hexadecimal := let norm_i i f := match i with | Pos i => Pos (unorm i) | Neg i => match nzhead (app i f) with Nil => Pos zero | _ => Neg (unorm i) end end in match d with | Hexadecimal i f => Hexadecimal (norm_i i f) f | HexadecimalExp i f e => match Decimal.norm e with | Decimal.Pos Decimal.zero => Hexadecimal (norm_i i f) f | e => HexadecimalExp (norm_i i f) f e end end.
Lemma dnorm_spec_i d : let (i, f) := match d with Hexadecimal i f => (i, f) | HexadecimalExp i f _ => (i, f) end in let i' := match dnorm d with Hexadecimal i _ => i | HexadecimalExp i _ _ => i end in match i with | Pos i => i' = Pos (unorm i) | Neg i => (i' = Neg (unorm i) /\ (nzhead i <> Nil \/ nzhead f <> Nil)) \/ (i' = Pos zero /\ (nzhead i = Nil /\ nzhead f = Nil)) end.
Proof.
case d as [i f|i f e]; case i as [i|i].
-
now simpl.
-
simpl; case (uint_eq_dec (nzhead (app i f)) Nil); intro Ha.
+
rewrite Ha; right; split; [now simpl|split].
*
now unfold unorm; rewrite (nzhead_app_nil_l _ _ Ha).
*
now unfold unorm; rewrite (nzhead_app_nil_r _ _ Ha).
+
left; split; [now revert Ha; case nzhead|].
case (uint_eq_dec (nzhead i) Nil).
*
intro Hi; right; intro Hf; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
*
now intro H; left.
-
simpl; case (Decimal.norm e); clear e; intro e; [|now simpl].
now case e; clear e; [|intro e..]; [|case e|..].
-
simpl.
set (m := match nzhead _ with Nil => _ | _ => _ end).
set (m' := match _ with Hexadecimal _ _ => _ | _ => _ end).
replace m' with m.
2:{
unfold m'; case (Decimal.norm e); clear m' e; intro e; [|now simpl].
now case e; clear e; [|intro e..]; [|case e|..].
}
unfold m; case (uint_eq_dec (nzhead (app i f)) Nil); intro Ha.
+
rewrite Ha; right; split; [now simpl|split].
*
now unfold unorm; rewrite (nzhead_app_nil_l _ _ Ha).
*
now unfold unorm; rewrite (nzhead_app_nil_r _ _ Ha).
+
left; split; [now revert Ha; case nzhead|].
case (uint_eq_dec (nzhead i) Nil).
*
intro Hi; right; intro Hf; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
*
now intro H; left.
Qed.
Lemma dnorm_spec_f d : let f := match d with Hexadecimal _ f => f | HexadecimalExp _ f _ => f end in let f' := match dnorm d with Hexadecimal _ f => f | HexadecimalExp _ f _ => f end in f' = f.
Proof.
case d as [i f|i f e]; [now simpl|].
simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); [now intros->|intro He].
set (i' := match i with Pos _ => _ | _ => _ end).
set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
replace m with (HexadecimalExp i' f (Decimal.norm e)); [now simpl|].
unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..].
Qed.
Lemma dnorm_spec_e d : match d, dnorm d with | Hexadecimal _ _, Hexadecimal _ _ => True | HexadecimalExp _ _ e, Hexadecimal _ _ => Decimal.norm e = Decimal.Pos Decimal.zero | HexadecimalExp _ _ e, HexadecimalExp _ _ e' => e' = Decimal.norm e /\ e' <> Decimal.Pos Decimal.zero | Hexadecimal _ _, HexadecimalExp _ _ _ => False end.
Proof.
case d as [i f|i f e]; [now simpl|].
simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); [now intros->|intro He].
set (i' := match i with Pos _ => _ | _ => _ end).
set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
replace m with (HexadecimalExp i' f (Decimal.norm e)); [now simpl|].
unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..].
Qed.
Lemma dnorm_involutive d : dnorm (dnorm d) = dnorm d.
Proof.
case d as [i f|i f e]; case i as [i|i].
-
now simpl; rewrite unorm_involutive.
-
simpl; case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha].
set (m := match nzhead _ with Nil =>_ | _ => _ end).
replace m with (Neg (unorm i)).
2:{
now unfold m; revert Ha; case nzhead.
}
case (uint_eq_dec (nzhead i) Nil); intro Hi.
+
unfold unorm; rewrite Hi; simpl.
case (uint_eq_dec (nzhead f) Nil).
*
intro Hf; exfalso; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
*
now case nzhead.
+
rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead.
now revert Ha; case nzhead.
-
simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); intro He.
+
now rewrite He; simpl; rewrite unorm_involutive.
+
set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
replace m with (HexadecimalExp (Pos (unorm i)) f (Decimal.norm e)).
2:{
unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..].
}
simpl; rewrite DecimalFacts.norm_involutive, unorm_involutive.
revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..].
-
simpl; case (Decimal.int_eq_dec (Decimal.norm e) (Decimal.Pos Decimal.zero)); intro He.
+
rewrite He; simpl.
case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha].
set (m := match nzhead _ with Nil =>_ | _ => _ end).
replace m with (Neg (unorm i)).
2:{
now unfold m; revert Ha; case nzhead.
}
case (uint_eq_dec (nzhead i) Nil); intro Hi.
*
unfold unorm; rewrite Hi; simpl.
case (uint_eq_dec (nzhead f) Nil).
--
intro Hf; exfalso; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
--
now case nzhead.
*
rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead.
now revert Ha; case nzhead.
+
set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
pose (i' := match nzhead (app i f) with Nil => Pos zero | _ => Neg (unorm i) end).
replace m with (HexadecimalExp i' f (Decimal.norm e)).
2:{
unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..].
}
simpl; rewrite DecimalFacts.norm_involutive.
set (i'' := match i' with Pos _ => _ | _ => _ end).
clear m; set (m := match Decimal.norm e with Decimal.Pos _ => _ | _ => _ end).
replace m with (HexadecimalExp i'' f (Decimal.norm e)).
2:{
unfold m; revert He; case (Decimal.norm e); clear m e; intro e; [|now simpl].
now case e; clear e; [|intro e; case e|..].
}
unfold i'', i'.
case (uint_eq_dec (nzhead (app i f)) Nil); [now intros->|intro Ha].
fold i'; replace i' with (Neg (unorm i)).
2:{
now unfold i'; revert Ha; case nzhead.
}
case (uint_eq_dec (nzhead i) Nil); intro Hi.
*
unfold unorm; rewrite Hi; simpl.
case (uint_eq_dec (nzhead f) Nil).
--
intro Hf; exfalso; apply Ha.
now rewrite <-nzhead_app_nzhead, Hi, app_nil_l.
--
now case nzhead.
*
rewrite unorm_involutive, (unorm_nzhead _ Hi), nzhead_app_nzhead.
now revert Ha; case nzhead.
Qed.
Lemma IZ_to_Z_IZ_of_Z z : IZ_to_Z (IZ_of_Z z) = Some z.
Proof.
now case z.
Qed.
Lemma dnorm_i_exact i f : (nb_digits f < nb_digits (unorm (app (abs i) f)))%nat -> match i with | Pos i => Pos (unorm i) | Neg i => match nzhead (app i f) with | Nil => Pos zero | _ => Neg (unorm i) end end = norm i.
Proof.
case i as [ni|ni]; [now simpl|]; simpl.
case (uint_eq_dec (nzhead (app ni f)) Nil); intro Ha.
{
now rewrite Ha, (nzhead_app_nil_l _ _ Ha).
}
rewrite (unorm_nzhead _ Ha).
set (m := match nzhead _ with Nil => _ | _ => _ end).
replace m with (Neg (unorm ni)); [|now unfold m; revert Ha; case nzhead].
case (uint_eq_dec (nzhead ni) Nil); intro Hni.
{
rewrite <-nzhead_app_nzhead, Hni, app_nil_l.
intro H; exfalso; revert H; apply Nat.le_ngt, nb_digits_nzhead.
}
clear m; set (m := match nzhead ni with Nil => _ | _ => _ end).
replace m with (Neg (nzhead ni)); [|now unfold m; revert Hni; case nzhead].
now rewrite (unorm_nzhead _ Hni).
Qed.
Lemma dnorm_i_exact' i f : (nb_digits (unorm (app (abs i) f)) <= nb_digits f)%nat -> match i with | Pos i => Pos (unorm i) | Neg i => match nzhead (app i f) with | Nil => Pos zero | _ => Neg (unorm i) end end = match norm (app_int i f) with | Pos _ => Pos zero | Neg _ => Neg zero end.
Proof.
case i as [ni|ni]; simpl.
{
now intro Hnb; rewrite (unorm_app_zero _ _ Hnb).
}
unfold unorm.
case (uint_eq_dec (nzhead (app ni f)) Nil); intro Hn.
{
now rewrite Hn.
}
set (m := match nzhead _ with Nil => _ | _ => _ end).
replace m with (nzhead (app ni f)).
2:{
now unfold m; revert Hn; case nzhead.
}
clear m; set (m := match nzhead _ with Nil => _ | _ => _ end).
replace m with (Neg (unorm ni)).
2:{
now unfold m, unorm; revert Hn; case nzhead.
}
clear m; set (m := match nzhead _ with Nil => _ | _ => _ end).
replace m with (Neg (nzhead (app ni f))).
2:{
now unfold m; revert Hn; case nzhead.
}
rewrite <-(unorm_nzhead _ Hn).
now intro H; rewrite (unorm_app_zero _ _ H).
Qed.
Lemma to_of (d:hexadecimal) : to_hexadecimal (of_hexadecimal d) = Some (dnorm d).
Proof.
case d as [i f|i f e].
-
unfold of_hexadecimal; simpl; unfold IQmake_to_hexadecimal'.
rewrite IZ_to_Z_IZ_of_Z.
unfold IQmake_to_hexadecimal; simpl.
change (fun _ : positive => _) with (Pos.mul 16).
rewrite nztail_to_hex_uint_pow16, to_of.
case_eq (nb_digits f); [|intro nb]; intro Hnb.
+
rewrite (nb_digits_0 _ Hnb), app_int_nil_r.
case i as [ni|ni]; [now simpl|].
rewrite app_nil_r; simpl; unfold unorm.
now case (nzhead ni).
+
rewrite <-Hnb.
rewrite abs_norm, abs_app_int.
case Nat.ltb_spec; intro Hnb'.
*
rewrite (del_tail_app_int_exact _ _ Hnb').
rewrite (del_head_app_int_exact _ _ Hnb').
now rewrite (dnorm_i_exact _ _ Hnb').
*
rewrite (unorm_app_r _ _ Hnb').
rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb].
now rewrite dnorm_i_exact'.
-
unfold of_hexadecimal; simpl.
rewrite <-DecimalZ.to_of.
case (Z.of_int e); clear e; [|intro e..]; simpl.
+
unfold IQmake_to_hexadecimal'.
rewrite IZ_to_Z_IZ_of_Z.
unfold IQmake_to_hexadecimal; simpl.
change (fun _ : positive => _) with (Pos.mul 16).
rewrite nztail_to_hex_uint_pow16, to_of.
case_eq (nb_digits f); [|intro nb]; intro Hnb.
*
rewrite (nb_digits_0 _ Hnb), app_int_nil_r.
case i as [ni|ni]; [now simpl|].
rewrite app_nil_r; simpl; unfold unorm.
now case (nzhead ni).
*
rewrite <-Hnb.
rewrite abs_norm, abs_app_int.
case Nat.ltb_spec; intro Hnb'.
--
rewrite (del_tail_app_int_exact _ _ Hnb').
rewrite (del_head_app_int_exact _ _ Hnb').
now rewrite (dnorm_i_exact _ _ Hnb').
--
rewrite (unorm_app_r _ _ Hnb').
rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb].
now rewrite dnorm_i_exact'.
+
unfold IQmake_to_hexadecimal'.
rewrite IZ_to_Z_IZ_of_Z.
unfold IQmake_to_hexadecimal; simpl.
change (fun _ : positive => _) with (Pos.mul 16).
rewrite nztail_to_hex_uint_pow16, to_of.
generalize (DecimalPos.Unsigned.to_uint_nonzero e); intro He.
set (dnorm_i := match i with Pos _ => _ | _ => _ end).
set (m := match Pos.to_uint e with Decimal.Nil => _ | _ => _ end).
replace m with (HexadecimalExp dnorm_i f (Decimal.Pos (Pos.to_uint e))).
2:{
now unfold m; revert He; case (Pos.to_uint e); [|intro u; case u|..].
}
clear m; unfold dnorm_i.
case_eq (nb_digits f); [|intro nb]; intro Hnb.
*
rewrite (nb_digits_0 _ Hnb), app_int_nil_r.
case i as [ni|ni]; [now simpl|].
rewrite app_nil_r; simpl; unfold unorm.
now case (nzhead ni).
*
rewrite <-Hnb.
rewrite abs_norm, abs_app_int.
case Nat.ltb_spec; intro Hnb'.
--
rewrite (del_tail_app_int_exact _ _ Hnb').
rewrite (del_head_app_int_exact _ _ Hnb').
now rewrite (dnorm_i_exact _ _ Hnb').
--
rewrite (unorm_app_r _ _ Hnb').
rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb].
now rewrite dnorm_i_exact'.
+
unfold IQmake_to_hexadecimal'.
rewrite IZ_to_Z_IZ_of_Z.
unfold IQmake_to_hexadecimal; simpl.
change (fun _ : positive => _) with (Pos.mul 16).
rewrite nztail_to_hex_uint_pow16, to_of.
case_eq (nb_digits f); [|intro nb]; intro Hnb.
*
rewrite (nb_digits_0 _ Hnb), app_int_nil_r.
case i as [ni|ni]; [now simpl|].
rewrite app_nil_r; simpl; unfold unorm.
now case (nzhead ni).
*
rewrite <-Hnb.
rewrite abs_norm, abs_app_int.
case Nat.ltb_spec; intro Hnb'.
--
rewrite (del_tail_app_int_exact _ _ Hnb').
rewrite (del_head_app_int_exact _ _ Hnb').
now rewrite (dnorm_i_exact _ _ Hnb').
--
rewrite (unorm_app_r _ _ Hnb').
rewrite iter_D0_unorm; [|now apply nb_digits_n0; rewrite Hnb].
now rewrite dnorm_i_exact'.
Qed.
(** Some consequences *)
Lemma to_hexadecimal_inj q q' : to_hexadecimal q <> None -> to_hexadecimal q = to_hexadecimal q' -> q = q'.
Proof.
intros Hnone EQ.
generalize (of_to q) (of_to q').
rewrite <-EQ.
revert Hnone; case to_hexadecimal; [|now simpl].
now intros d _ H1 H2; rewrite <-(H1 d eq_refl), <-(H2 d eq_refl).
Qed.
Lemma to_hexadecimal_surj d : exists q, to_hexadecimal q = Some (dnorm d).
Proof.
exists (of_hexadecimal d).
apply to_of.
Qed.
Lemma of_hexadecimal_dnorm d : of_hexadecimal (dnorm d) = of_hexadecimal d.
Proof.
now apply to_hexadecimal_inj; rewrite !to_of; [|rewrite dnorm_involutive].
Qed.
Lemma of_inj d d' : of_hexadecimal d = of_hexadecimal d' -> dnorm d = dnorm d'.
Proof.
intro H.
apply (@f_equal _ _ (fun x => match x with Some x => x | _ => d end) (Some (dnorm d)) (Some (dnorm d'))).
now rewrite <- !to_of, H.
Qed.
Lemma of_iff d d' : of_hexadecimal d = of_hexadecimal d' <-> dnorm d = dnorm d'.
Proof.
split.
-
apply of_inj.
-
intros E.
rewrite <- of_hexadecimal_dnorm, E.
apply of_hexadecimal_dnorm.
Qed.