Timings for DecimalFacts.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/DecimalFacts.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-stdlib.dev/_build/default/theories//./Numbers/DecimalFacts.timing
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** * DecimalFacts : some facts about Decimal numbers *)
Require Import Decimal Arith ZArith.
Variant digits := d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | d9.
Fixpoint to_list (u : uint) : list digits := match u with | Nil => nil | D0 u => cons d0 (to_list u) | D1 u => cons d1 (to_list u) | D2 u => cons d2 (to_list u) | D3 u => cons d3 (to_list u) | D4 u => cons d4 (to_list u) | D5 u => cons d5 (to_list u) | D6 u => cons d6 (to_list u) | D7 u => cons d7 (to_list u) | D8 u => cons d8 (to_list u) | D9 u => cons d9 (to_list u) end.
Fixpoint of_list (l : list digits) : uint := match l with | nil => Nil | cons d0 l => D0 (of_list l) | cons d1 l => D1 (of_list l) | cons d2 l => D2 (of_list l) | cons d3 l => D3 (of_list l) | cons d4 l => D4 (of_list l) | cons d5 l => D5 (of_list l) | cons d6 l => D6 (of_list l) | cons d7 l => D7 (of_list l) | cons d8 l => D8 (of_list l) | cons d9 l => D9 (of_list l) end.
Lemma of_list_to_list u : of_list (to_list u) = u.
Proof.
now induction u; [|simpl; rewrite IHu..].
Qed.
Lemma to_list_of_list l : to_list (of_list l) = l.
Proof.
now induction l as [|h t IHl]; [|case h; simpl; rewrite IHl].
Qed.
Lemma to_list_inj u u' : to_list u = to_list u' -> u = u'.
Proof.
now intro H; rewrite <-(of_list_to_list u), <-(of_list_to_list u'), H.
Qed.
Lemma of_list_inj u u' : of_list u = of_list u' -> u = u'.
Proof.
now intro H; rewrite <-(to_list_of_list u), <-(to_list_of_list u'), H.
Qed.
Lemma nb_digits_spec u : nb_digits u = length (to_list u).
Proof.
now induction u; [|simpl; rewrite IHu..].
Qed.
Fixpoint lnzhead l := match l with | nil => nil | cons d l' => match d with | d0 => lnzhead l' | _ => l end end.
Lemma nzhead_spec u : to_list (nzhead u) = lnzhead (to_list u).
Proof.
now induction u; [|simpl; rewrite IHu|..].
Qed.
Definition lzero := cons d0 nil.
Definition lunorm l := match lnzhead l with | nil => lzero | d => d end.
Lemma unorm_spec u : to_list (unorm u) = lunorm (to_list u).
Proof.
now unfold unorm, lunorm; rewrite <-nzhead_spec; case (nzhead u).
Qed.
Lemma revapp_spec d d' : to_list (revapp d d') = List.rev_append (to_list d) (to_list d').
Proof.
now revert d'; induction d; intro d'; [|simpl; rewrite IHd..].
Qed.
Lemma rev_spec d : to_list (rev d) = List.rev (to_list d).
Proof.
now unfold rev; rewrite revapp_spec, List.rev_alt; simpl.
Qed.
Lemma app_spec d d' : to_list (app d d') = Datatypes.app (to_list d) (to_list d').
Proof.
unfold app.
now rewrite revapp_spec, List.rev_append_rev, rev_spec, List.rev_involutive.
Qed.
Definition lnztail l := let fix aux l_rev := match l_rev with | cons d0 l_rev => let (r, n) := aux l_rev in pair r (S n) | _ => pair l_rev O end in let (r, n) := aux (List.rev l) in pair (List.rev r) n.
Lemma nztail_spec d : let (r, n) := nztail d in let (r', n') := lnztail (to_list d) in to_list r = r' /\ n = n'.
Proof.
unfold nztail, lnztail.
set (f := fix aux d_rev := match d_rev with | D0 d_rev => let (r, n) := aux d_rev in (r, S n) | _ => (d_rev, 0) end).
set (f' := fix aux (l_rev : list digits) : list digits * nat := match l_rev with | cons d0 l_rev => let (r, n) := aux l_rev in (r, S n) | _ => (l_rev, 0) end).
rewrite <-(of_list_to_list (rev d)), rev_spec.
induction (List.rev _) as [|h t IHl]; [now simpl|].
case h; simpl; [|now rewrite rev_spec; simpl; rewrite to_list_of_list..].
now revert IHl; case f; intros r n; case f'; intros r' n' [-> ->].
Qed.
Lemma del_head_spec_0 d : del_head 0 d = d.
Proof.
now simpl.
Qed.
Lemma del_head_spec_small n d : n <= length (to_list d) -> to_list (del_head n d) = List.skipn n (to_list d).
Proof.
revert d; induction n as [|n IHn]; intro d; [now simpl|].
now case d; [|intros d' H; apply IHn, le_S_n..].
Qed.
Lemma del_head_spec_large n d : length (to_list d) < n -> del_head n d = zero.
Proof.
revert d; induction n; intro d; [now case d|].
now case d; [|intro d'; simpl; intro H; rewrite (IHn _ (proj2 (Nat.succ_lt_mono _ _) H))..].
Qed.
Lemma nb_digits_0 d : nb_digits d = 0 -> d = Nil.
Proof.
rewrite nb_digits_spec, <-(of_list_to_list d).
now case (to_list d) as [|h t]; [|rewrite to_list_of_list].
Qed.
Lemma nb_digits_n0 d : nb_digits d <> 0 -> d <> Nil.
Proof.
now case d; [|intros u _..].
Qed.
Lemma nb_digits_iter_D0 n d : nb_digits (Nat.iter n D0 d) = n + nb_digits d.
Proof.
now induction n; simpl; [|rewrite IHn].
Qed.
Lemma length_lnzhead l : length (lnzhead l) <= length l.
Proof.
now induction l as [|h t IHl]; [|case h; [apply le_S|..]].
Qed.
Lemma nb_digits_nzhead u : nb_digits (nzhead u) <= nb_digits u.
Proof.
now induction u; [|apply le_S|..].
Qed.
Lemma unorm_nzhead u : nzhead u <> Nil -> unorm u = nzhead u.
Proof.
now unfold unorm; case nzhead.
Qed.
Lemma nb_digits_unorm u : u <> Nil -> nb_digits (unorm u) <= nb_digits u.
Proof.
intro Hu; case (uint_eq_dec (nzhead u) Nil).
{
unfold unorm; intros ->; simpl.
now revert Hu; case u; [|intros u' _; apply le_n_S, Nat.le_0_l..].
}
intro H; rewrite (unorm_nzhead _ H); apply nb_digits_nzhead.
Qed.
Lemma nb_digits_rev d : nb_digits (rev d) = nb_digits d.
Proof.
now rewrite !nb_digits_spec, rev_spec, List.rev_length.
Qed.
Lemma nb_digits_del_head_sub d n : n <= nb_digits d -> nb_digits (del_head (nb_digits d - n) d) = n.
Proof.
rewrite !nb_digits_spec; intro Hn.
rewrite del_head_spec_small; [|now apply Nat.le_sub_l].
rewrite List.skipn_length, <-(Nat2Z.id (_ - _)).
rewrite Nat2Z.inj_sub; [|now apply Nat.le_sub_l].
rewrite (Nat2Z.inj_sub _ _ Hn).
rewrite Z.sub_sub_distr, Z.sub_diag; apply Nat2Z.id.
Qed.
Lemma unorm_D0 u : unorm (D0 u) = unorm u.
Proof.
reflexivity.
Qed.
Lemma app_nil_l d : app Nil d = d.
Proof.
now simpl.
Qed.
Lemma app_nil_r d : app d Nil = d.
Proof.
now apply to_list_inj; rewrite app_spec, List.app_nil_r.
Qed.
Lemma abs_app_int d d' : abs (app_int d d') = app (abs d) d'.
Proof.
now case d.
Qed.
Lemma abs_norm d : abs (norm d) = unorm (abs d).
Proof.
now case d as [u|u]; [|simpl; unfold unorm; case nzhead].
Qed.
Lemma iter_D0_nzhead d : Nat.iter (nb_digits d - nb_digits (nzhead d)) D0 (nzhead d) = d.
Proof.
induction d; [now simpl| |now rewrite Nat.sub_diag..].
simpl nzhead; simpl nb_digits.
rewrite (Nat.sub_succ_l _ _ (nb_digits_nzhead _)).
now rewrite <-IHd at 4.
Qed.
Lemma iter_D0_unorm d : d <> Nil -> Nat.iter (nb_digits d - nb_digits (unorm d)) D0 (unorm d) = d.
Proof.
case (uint_eq_dec (nzhead d) Nil); intro Hn.
{
unfold unorm; rewrite Hn; simpl; intro H.
revert H Hn; induction d; [now simpl|intros _|now intros _..].
case (uint_eq_dec d Nil); simpl; intros H Hn; [now rewrite H|].
rewrite Nat.sub_0_r, <- (Nat.sub_add 1 (nb_digits d)), Nat.add_comm.
{
now simpl; rewrite IHd.
}
revert H; case d; [now simpl|intros u _; apply le_n_S, Nat.le_0_l..].
}
intros _; rewrite (unorm_nzhead _ Hn); apply iter_D0_nzhead.
Qed.
Lemma nzhead_app_l d d' : nb_digits d' < nb_digits (nzhead (app d d')) -> nzhead (app d d') = app (nzhead d) d'.
Proof.
intro Hl; apply to_list_inj; revert Hl.
rewrite !nb_digits_spec, app_spec, !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl].
{
now simpl; intro H; exfalso; revert H; apply Nat.le_ngt, length_lnzhead.
}
rewrite <-List.app_comm_cons.
now case h; [simpl; intro Hl; apply IHl|..].
Qed.
Lemma nzhead_app_r d d' : nb_digits (nzhead (app d d')) <= nb_digits d' -> nzhead (app d d') = nzhead d'.
Proof.
intro Hl; apply to_list_inj; revert Hl.
rewrite !nb_digits_spec, !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl]; [now simpl|].
rewrite <-List.app_comm_cons.
now case h; [| simpl; rewrite List.app_length; intro Hl; exfalso; revert Hl; apply Nat.le_ngt, Nat.le_add_l..].
Qed.
Lemma nzhead_app_nil_r d d' : nzhead (app d d') = Nil -> nzhead d' = Nil.
Proof.
now intro H; generalize H; rewrite nzhead_app_r; [|rewrite H; apply Nat.le_0_l].
Qed.
Lemma nzhead_app_nil d d' : nb_digits (nzhead (app d d')) <= nb_digits d' -> nzhead d = Nil.
Proof.
intro H; apply to_list_inj; revert H.
rewrite !nb_digits_spec, !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl]; [now simpl|].
now case h; [now simpl|..]; simpl;intro H; exfalso; revert H; apply Nat.le_ngt; rewrite List.app_length; apply Nat.le_add_l.
Qed.
Lemma nzhead_app_nil_l d d' : nzhead (app d d') = Nil -> nzhead d = Nil.
Proof.
intro H; apply to_list_inj; generalize (f_equal to_list H); clear H.
rewrite !nzhead_spec, app_spec.
induction (to_list d) as [|h t IHl]; [now simpl|].
now rewrite <-List.app_comm_cons; case h.
Qed.
Lemma unorm_app_zero d d' : nb_digits (unorm (app d d')) <= nb_digits d' -> unorm d = zero.
Proof.
unfold unorm.
case (uint_eq_dec (nzhead (app d d')) Nil).
{
now intro Hn; rewrite Hn, (nzhead_app_nil_l _ _ Hn).
}
intro H; fold (unorm (app d d')); rewrite (unorm_nzhead _ H); intro H'.
case (uint_eq_dec (nzhead d) Nil); [now intros->|].
intro H''; fold (unorm d); rewrite (unorm_nzhead _ H'').
exfalso; apply H''; revert H'; apply nzhead_app_nil.
Qed.
Lemma app_int_nil_r d : app_int d Nil = d.
Proof.
now case d; intro d'; simpl; rewrite <-(of_list_to_list (app _ _)), app_spec; rewrite List.app_nil_r, of_list_to_list.
Qed.
Lemma unorm_app_l d d' : nb_digits d' < nb_digits (unorm (app d d')) -> unorm (app d d') = app (unorm d) d'.
Proof.
case (uint_eq_dec d' Nil); [now intros->; rewrite !app_nil_r|intro Hd'].
case (uint_eq_dec (nzhead (app d d')) Nil).
{
unfold unorm; intros->; simpl; intro H; exfalso; revert H; apply Nat.le_ngt.
now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Peano.le_0_n..].
}
intro Ha; rewrite (unorm_nzhead _ Ha).
intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn).
rewrite !nb_digits_spec, app_spec, List.app_length.
case (uint_eq_dec (nzhead d) Nil).
{
intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl.
}
now intro H; rewrite (unorm_nzhead _ H).
Qed.
Lemma unorm_app_r d d' : nb_digits (unorm (app d d')) <= nb_digits d' -> unorm (app d d') = unorm d'.
Proof.
case (uint_eq_dec (nzhead (app d d')) Nil).
{
now unfold unorm; intro H; rewrite H, (nzhead_app_nil_r _ _ H).
}
intro Ha; rewrite (unorm_nzhead _ Ha).
case (uint_eq_dec (nzhead d') Nil).
{
now intros H H'; exfalso; apply Ha; rewrite nzhead_app_r.
}
intro Hd'; rewrite (unorm_nzhead _ Hd'); apply nzhead_app_r.
Qed.
Lemma norm_app_int d d' : nb_digits d' < nb_digits (unorm (app (abs d) d')) -> norm (app_int d d') = app_int (norm d) d'.
Proof.
case (uint_eq_dec d' Nil); [now intros->; rewrite !app_int_nil_r|intro Hd'].
case d as [d|d]; [now simpl; intro H; apply f_equal, unorm_app_l|].
simpl; unfold unorm.
case (uint_eq_dec (nzhead (app d d')) Nil).
{
intros->; simpl; intro H; exfalso; revert H; apply Nat.le_ngt.
now revert Hd'; case d'; [|intros d'' _; apply le_n_S, Nat.le_0_l..].
}
set (m := match nzhead _ with Nil => _ | _ => _ end).
intro Ha.
replace m with (nzhead (app d d')).
2:{
now unfold m; revert Ha; case nzhead.
}
intro Hn; generalize Hn; rewrite (nzhead_app_l _ _ Hn).
case (uint_eq_dec (app (nzhead d) d') Nil).
{
intros->; simpl; intro H; exfalso; revert H; apply Nat.le_ngt, Nat.le_0_l.
}
clear m; set (m := match app _ _ with Nil => _ | _ => _ end).
intro Ha'.
replace m with (Neg (app (nzhead d) d')); [|now unfold m; revert Ha'; case app].
case (uint_eq_dec (nzhead d) Nil).
{
intros->; simpl; intro H; exfalso; revert H; apply Nat.lt_irrefl.
}
clear m; set (m := match nzhead _ with Nil => _ | _ => _ end).
intro Hd.
now replace m with (Neg (nzhead d)); [|unfold m; revert Hd; case nzhead].
Qed.
Lemma del_head_nb_digits d : del_head (nb_digits d) d = Nil.
Proof.
apply to_list_inj.
rewrite nb_digits_spec, del_head_spec_small; [|now simpl].
now rewrite List.skipn_all.
Qed.
Lemma del_tail_nb_digits d : del_tail (nb_digits d) d = Nil.
Proof.
now unfold del_tail; rewrite <-nb_digits_rev, del_head_nb_digits.
Qed.
Lemma del_head_app n d d' : n <= nb_digits d -> del_head n (app d d') = app (del_head n d) d'.
Proof.
rewrite nb_digits_spec; intro Hn.
apply to_list_inj.
rewrite del_head_spec_small.
2:{
now rewrite app_spec, List.app_length, <- Nat.le_add_r.
}
rewrite !app_spec, (del_head_spec_small _ _ Hn).
rewrite List.skipn_app.
now rewrite (proj2 (Nat.sub_0_le _ _) Hn).
Qed.
Lemma del_tail_app n d d' : n <= nb_digits d' -> del_tail n (app d d') = app d (del_tail n d').
Proof.
rewrite nb_digits_spec; intro Hn.
unfold del_tail.
rewrite <-(of_list_to_list (rev (app d d'))), rev_spec, app_spec.
rewrite List.rev_app_distr, <-!rev_spec, <-app_spec, of_list_to_list.
rewrite del_head_app; [|now rewrite nb_digits_spec, rev_spec, List.rev_length].
apply to_list_inj.
rewrite rev_spec, !app_spec, !rev_spec.
now rewrite List.rev_app_distr, List.rev_involutive.
Qed.
Lemma del_tail_app_int n d d' : n <= nb_digits d' -> del_tail_int n (app_int d d') = app_int d (del_tail n d').
Proof.
now case d as [d|d]; simpl; intro H; rewrite del_tail_app.
Qed.
Lemma app_del_tail_head n (d:uint) : n <= nb_digits d -> app (del_tail n d) (del_head (nb_digits d - n) d) = d.
Proof.
rewrite nb_digits_spec; intro Hn; unfold del_tail.
rewrite <-(of_list_to_list (app _ _)), app_spec, rev_spec.
rewrite del_head_spec_small; [|now rewrite rev_spec, List.rev_length].
rewrite del_head_spec_small; [|now apply Nat.le_sub_l].
rewrite rev_spec.
set (n' := _ - n).
assert (Hn' : n = length (to_list d) - n').
{
now rewrite <- (Nat.add_sub (length (to_list d)) n), Nat.add_comm, <- 2 Nat.add_sub_assoc, Nat.sub_diag; trivial.
}
now rewrite Hn', <-List.firstn_skipn_rev, List.firstn_skipn, of_list_to_list.
Qed.
Lemma app_int_del_tail_head n (d:int) : n <= nb_digits (abs d) -> app_int (del_tail_int n d) (del_head (nb_digits (abs d) - n) (abs d)) = d.
Proof.
now case d; clear d; simpl; intros u Hu; rewrite app_del_tail_head.
Qed.
Lemma del_head_app_int_exact i f : nb_digits f < nb_digits (unorm (app (abs i) f)) -> del_head (nb_digits (unorm (app (abs i) f)) - nb_digits f) (unorm (app (abs i) f)) = f.
Proof.
simpl; intro Hnb; generalize Hnb; rewrite (unorm_app_l _ _ Hnb); clear Hnb.
replace (_ - _) with (nb_digits (unorm (abs i))).
-
now rewrite del_head_app; [rewrite del_head_nb_digits|].
-
rewrite !nb_digits_spec, app_spec, List.app_length.
symmetry; apply Nat.add_sub.
Qed.
Lemma del_tail_app_int_exact i f : nb_digits f < nb_digits (unorm (app (abs i) f)) -> del_tail_int (nb_digits f) (norm (app_int i f)) = norm i.
Proof.
simpl; intro Hnb.
rewrite (norm_app_int _ _ Hnb).
rewrite del_tail_app_int; [|now simpl].
now rewrite del_tail_nb_digits, app_int_nil_r.
Qed.
(** Normalization on little-endian numbers *)
Fixpoint nztail d := match d with | Nil => Nil | D0 d => match nztail d with Nil => Nil | d' => D0 d' end | D1 d => D1 (nztail d) | D2 d => D2 (nztail d) | D3 d => D3 (nztail d) | D4 d => D4 (nztail d) | D5 d => D5 (nztail d) | D6 d => D6 (nztail d) | D7 d => D7 (nztail d) | D8 d => D8 (nztail d) | D9 d => D9 (nztail d) end.
Definition lnorm d := match nztail d with | Nil => zero | d => d end.
Lemma nzhead_revapp_0 d d' : nztail d = Nil -> nzhead (revapp d d') = nzhead d'.
Proof.
revert d'.
induction d; intros d' [=]; simpl; trivial.
destruct (nztail d); now rewrite IHd.
Qed.
Lemma nzhead_revapp d d' : nztail d <> Nil -> nzhead (revapp d d') = revapp (nztail d) d'.
Proof.
revert d'.
induction d; intros d' H; simpl in *; try destruct (nztail d) eqn:E; (now rewrite ?nzhead_revapp_0) || (now rewrite IHd).
Qed.
Lemma nzhead_rev d : nztail d <> Nil -> nzhead (rev d) = rev (nztail d).
Proof.
apply nzhead_revapp.
Qed.
Lemma rev_rev d : rev (rev d) = d.
Proof.
now apply to_list_inj; rewrite !rev_spec, List.rev_involutive.
Qed.
Lemma rev_nztail_rev d : rev (nztail (rev d)) = nzhead d.
Proof.
destruct (uint_eq_dec (nztail (rev d)) Nil) as [H|H].
-
rewrite H.
unfold rev; simpl.
rewrite <- (rev_rev d).
symmetry.
now apply nzhead_revapp_0.
-
now rewrite <- nzhead_rev, rev_rev.
Qed.
Lemma nzhead_D0 u : nzhead (D0 u) = nzhead u.
Proof.
reflexivity.
Qed.
Lemma nzhead_iter_D0 n u : nzhead (Nat.iter n D0 u) = nzhead u.
Proof.
now induction n.
Qed.
Lemma revapp_nil_inv d d' : revapp d d' = Nil -> d = Nil /\ d' = Nil.
Proof.
revert d'.
induction d; simpl; intros d' H; auto; now apply IHd in H.
Qed.
Lemma rev_nil_inv d : rev d = Nil -> d = Nil.
Proof.
apply revapp_nil_inv.
Qed.
Lemma rev_lnorm_rev d : rev (lnorm (rev d)) = unorm d.
Proof.
unfold unorm, lnorm.
rewrite <- rev_nztail_rev.
destruct nztail; simpl; trivial; destruct rev eqn:E; trivial; now apply rev_nil_inv in E.
Qed.
Lemma nzhead_nonzero d d' : nzhead d <> D0 d'.
Proof.
induction d; easy.
Qed.
Lemma unorm_0 d : unorm d = zero <-> nzhead d = Nil.
Proof.
unfold unorm.
split.
-
generalize (nzhead_nonzero d).
destruct nzhead; intros H [=]; trivial.
now destruct (H u).
-
now intros ->.
Qed.
Lemma unorm_nonnil d : unorm d <> Nil.
Proof.
unfold unorm.
now destruct nzhead.
Qed.
Lemma unorm_iter_D0 n u : unorm (Nat.iter n D0 u) = unorm u.
Proof.
now induction n.
Qed.
Lemma del_head_nonnil n u : n < nb_digits u -> del_head n u <> Nil.
Proof.
now revert n; induction u; intro n; [|case n; [|intro n'; simpl; intro H; apply IHu, Nat.succ_lt_mono]..].
Qed.
Lemma del_tail_nonnil n u : n < nb_digits u -> del_tail n u <> Nil.
Proof.
unfold del_tail.
rewrite <-nb_digits_rev.
generalize (rev u); clear u; intro u.
intros Hu H.
generalize (rev_nil_inv _ H); clear H.
now apply del_head_nonnil.
Qed.
Lemma nzhead_involutive d : nzhead (nzhead d) = nzhead d.
Proof.
now induction d.
Qed.
Lemma nztail_involutive d : nztail (nztail d) = nztail d.
Proof.
rewrite <-(rev_rev (nztail _)), <-(rev_rev (nztail d)), <-(rev_rev d).
now rewrite !rev_nztail_rev, nzhead_involutive.
Qed.
Lemma unorm_involutive d : unorm (unorm d) = unorm d.
Proof.
unfold unorm.
destruct (nzhead d) eqn:E; trivial.
destruct (nzhead_nonzero _ _ E).
Qed.
Lemma norm_involutive d : norm (norm d) = norm d.
Proof.
unfold norm.
destruct d.
-
f_equal.
apply unorm_involutive.
-
destruct (nzhead d) eqn:E; auto.
destruct (nzhead_nonzero _ _ E).
Qed.
Lemma lnzhead_neq_d0_head l l' : ~(lnzhead l = cons d0 l').
Proof.
now induction l as [|h t Il]; [|case h].
Qed.
Lemma lnzhead_head_nd0 h t : h <> d0 -> lnzhead (cons h t) = cons h t.
Proof.
now case h.
Qed.
Lemma nzhead_del_tail_nzhead_eq n u : nzhead u = u -> n < nb_digits u -> nzhead (del_tail n u) = del_tail n u.
Proof.
rewrite nb_digits_spec, <-List.rev_length.
intros Hu Hn.
apply to_list_inj; unfold del_tail.
rewrite nzhead_spec, rev_spec.
rewrite del_head_spec_small; [|now rewrite rev_spec; apply Nat.lt_le_incl].
rewrite rev_spec.
rewrite List.skipn_rev, List.rev_involutive.
generalize (f_equal to_list Hu) Hn; rewrite nzhead_spec; intro Hu'.
case (to_list u) as [|h t].
{
simpl; intro H; exfalso; revert H; apply Nat.le_ngt, Nat.le_0_l.
}
intro Hn'; generalize (Nat.sub_gt _ _ Hn'); rewrite List.rev_length.
case (_ - _); [now simpl|]; intros n' _.
rewrite List.firstn_cons, lnzhead_head_nd0; [now simpl|].
intro Hh; revert Hu'; rewrite Hh; apply lnzhead_neq_d0_head.
Qed.
Lemma nzhead_del_tail_nzhead n u : n < nb_digits (nzhead u) -> nzhead (del_tail n (nzhead u)) = del_tail n (nzhead u).
Proof.
apply nzhead_del_tail_nzhead_eq, nzhead_involutive.
Qed.
Lemma unorm_del_tail_unorm n u : n < nb_digits (unorm u) -> unorm (del_tail n (unorm u)) = del_tail n (unorm u).
Proof.
case (uint_eq_dec (nzhead u) Nil).
-
unfold unorm; intros->; case n; [now simpl|]; intro n'.
now simpl; intro H; exfalso; generalize (proj2 (Nat.succ_lt_mono _ _) H).
-
unfold unorm.
set (m := match nzhead u with Nil => zero | _ => _ end).
intros H.
replace m with (nzhead u).
+
intros H'.
rewrite (nzhead_del_tail_nzhead _ _ H').
now generalize (del_tail_nonnil _ _ H'); case del_tail.
+
now unfold m; revert H; case nzhead.
Qed.
Lemma norm_del_tail_int_norm n d : n < nb_digits (match norm d with Pos d | Neg d => d end) -> norm (del_tail_int n (norm d)) = del_tail_int n (norm d).
Proof.
case d; clear d; intros u; simpl.
-
now intro H; simpl; rewrite unorm_del_tail_unorm.
-
case (uint_eq_dec (nzhead u) Nil); intro Hu.
+
now rewrite Hu; case n; [|intros n' Hn'; generalize (proj2 (Nat.succ_lt_mono _ _) Hn')].
+
set (m := match nzhead u with Nil => Pos zero | _ => _ end).
replace m with (Neg (nzhead u)); [|now unfold m; revert Hu; case nzhead].
unfold del_tail_int.
clear m Hu.
simpl.
intro H; generalize (del_tail_nonnil _ _ H).
rewrite (nzhead_del_tail_nzhead _ _ H).
now case del_tail.
Qed.
Lemma nzhead_app_nzhead d d' : nzhead (app (nzhead d) d') = nzhead (app d d').
Proof.
unfold app.
rewrite <-(rev_nztail_rev d), rev_rev.
generalize (rev d); clear d; intro d.
generalize (nzhead_revapp_0 d d').
generalize (nzhead_revapp d d').
generalize (nzhead_revapp_0 (nztail d) d').
generalize (nzhead_revapp (nztail d) d').
rewrite nztail_involutive.
now case nztail; [intros _ H _ H'; rewrite (H eq_refl), (H' eq_refl) |intros d'' H _ H' _; rewrite H; [rewrite H'|]..].
Qed.
Lemma unorm_app_unorm d d' : unorm (app (unorm d) d') = unorm (app d d').
Proof.
unfold unorm.
rewrite <-(nzhead_app_nzhead d d').
now case (nzhead d).
Qed.
Lemma norm_app_int_norm d d' : unorm d' = zero -> norm (app_int (norm d) d') = norm (app_int d d').
Proof.
case d; clear d; intro d; simpl.
-
now rewrite unorm_app_unorm.
-
unfold app_int, app.
rewrite unorm_0; intro Hd'.
rewrite <-rev_nztail_rev.
generalize (nzhead_revapp (rev d) d').
generalize (nzhead_revapp_0 (rev d) d').
now case_eq (nztail (rev d)); [intros Hd'' H _; rewrite (H eq_refl); simpl; unfold unorm; simpl; rewrite Hd' |intros d'' Hd'' _ H; rewrite H; clear H; [|now simpl]; set (r := rev _); set (m := match r with Nil => Pos zero | _ => _ end); assert (H' : m = Neg r); [now unfold m; case_eq r; unfold r; [intro H''; generalize (rev_nil_inv _ H'')|..] |rewrite H'; unfold r; clear m r H']; unfold norm; rewrite rev_rev, <-Hd''; rewrite nzhead_revapp; rewrite nztail_involutive; [|rewrite Hd'']..].
Qed.
Lemma unorm_app_l_nil d d' : nzhead d = Nil -> unorm (app d d') = unorm d'.
Proof.
now unfold unorm; rewrite <-nzhead_app_nzhead; intros->; rewrite app_nil_l.
Qed.