Timings for EquivalenceProofs.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-fiat-crypto-with-bedrock.dev/./src/Assembly/EquivalenceProofs.v.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-fiat-crypto-with-bedrock.dev/./src/Assembly/EquivalenceProofs.v.timing
Require Import Coq.Lists.SetoidList.
Require Import Coq.Sorting.Permutation.
Require Import Coq.Lists.List.
Require Import Coq.micromega.Lia.
Require Import Coq.NArith.NArith.
Require Import Coq.ZArith.ZArith.
Require Import Coq.Classes.Morphisms.
Require Import Crypto.Language.PreExtra.
Require Import Crypto.Language.API.
Require Import Crypto.Language.APINotations.
Require Import Crypto.AbstractInterpretation.ZRange.
Require Import Crypto.Util.ErrorT.
Require Import Crypto.Assembly.Syntax.
Require Import Crypto.Assembly.Symbolic.
Require Import Crypto.Assembly.Equivalence.
Require Import Crypto.CastLemmas.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.Notations.
Require Import Crypto.Util.Sum.
Require Import Crypto.Util.Bool.Reflect.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.NatUtil.
Require Import Crypto.Util.ListUtil.
Require Import Crypto.Util.ListUtil.Partition.
Require Import Crypto.Util.ListUtil.Permutation.
Require Import Crypto.Util.ListUtil.PermutationCompat.
Require Import Crypto.Util.ListUtil.FoldMap.
Require Import Crypto.Util.ListUtil.Forall.
Require Import Crypto.Util.ListUtil.StdlibCompat.
Require Import Crypto.Util.ListUtil.IndexOf.
Require Import Crypto.Util.ListUtil.Split.
Require Import Crypto.Util.OptionList.
Require Import Crypto.Util.ZUtil.Definitions.
Require Import Crypto.Util.ZUtil.AddGetCarry.
Require Import Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.ZUtil.TruncatingShiftl.
Require Import Crypto.Util.ZUtil.Land.
Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.ZUtil.Tactics.ZeroBounds.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.ZUtil.Ones.
Require Import Crypto.Util.ZUtil.LandLorShiftBounds.
Require Import Crypto.Util.ZUtil.LandLorBounds.
Require Import Crypto.Util.ZUtil.Tactics.PeelLe.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.SpecializeUnderBindersBy.
Require Import Crypto.Util.Tactics.HasBody.
Require Import Crypto.Util.Tactics.Head.
Require Import Crypto.Util.Tactics.PrintContext.
Require Import Crypto.Util.Tactics.PrintGoal.
Require Import Crypto.Util.Tactics.UniquePose.
Require Import Crypto.Util.Tactics.SplitInContext.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SetEvars.
Require Import Crypto.Util.Tactics.SubstEvars.
Require Import Crypto.Util.Tactics.ClearHead.
Import API.Compilers APINotations.Compilers AbstractInterpretation.ZRange.Compilers.
Import ListNotations.
Local Open Scope list_scope.
(* TODO: move to global settings *)
Local Set Keyed Unification.
Definition eval_idx_Z (G : symbol -> option Z) (dag : dag) (idx : idx) (v : Z) : Prop := eval G dag (ExprRef idx) v.
Definition eval_idx_or_list_idx (G : symbol -> option Z) (d : dag) (v1 : idx + list idx) (v2 : Z + list Z) : Prop := match v1, v2 with | inl idx, inl v => eval_idx_Z G d idx v | inr idxs, inr vs => Forall2 (eval_idx_Z G d) idxs vs | inl _, inr _ | inr _, inl _ => False end.
Lemma lift_eval_idx_Z_impl G1 G2 d1 d2 (H : forall v n, eval G1 d1 v n -> eval G2 d2 v n) : forall v n, eval_idx_Z G1 d1 v n -> eval_idx_Z G2 d2 v n.
Proof using Type.
cbv [eval_idx_Z]; intros; destruct_head'_ex; destruct_head'_and; eauto.
Qed.
Lemma lift_eval_idx_or_list_idx_impl G1 G2 d1 d2 (H : forall v n, eval G1 d1 v n -> eval G2 d2 v n) : forall v n, eval_idx_or_list_idx G1 d1 v n -> eval_idx_or_list_idx G2 d2 v n.
Proof using Type.
cbv [eval_idx_or_list_idx]; intros; break_innermost_match; eauto using lift_eval_idx_Z_impl, Forall2_weaken.
Qed.
Lemma eval_eval_gen G1 G2 d1 d2 (H : forall v n, eval G1 d1 v n -> eval G2 d2 v n) : forall e v1 v2, eval G1 d1 e v1 -> eval G2 d2 e v2 -> v1 = v2.
Proof.
intros; eapply eval_eval; (idtac + apply H); eassumption.
Qed.
Lemma eval_eval_Forall2_gen G1 G2 d1 d2 (H : forall v n, eval G1 d1 v n -> eval G2 d2 v n) : forall e v1 v2, Forall2 (eval G1 d1) e v1 -> Forall2 (eval G2 d2) e v2 -> v1 = v2.
Proof.
intros; eapply eval_eval_Forall2; (idtac + (eapply Forall2_weaken; [ apply H | ])); eassumption.
Qed.
Lemma eval_eval_idx_Z G d : forall e v1 v2, eval_idx_Z G d e v1 -> eval_idx_Z G d e v2 -> v1 = v2.
Proof.
cbv [eval_idx_Z].
intros; eapply eval_eval; eassumption.
Qed.
Lemma eval_eval_idx_Z_gen G1 G2 d1 d2 (H : forall v n, eval G1 d1 v n -> eval G2 d2 v n) : forall e v1 v2, eval_idx_Z G1 d1 e v1 -> eval_idx_Z G2 d2 e v2 -> v1 = v2.
Proof.
intros; eapply eval_eval_idx_Z; (idtac + (eapply lift_eval_idx_Z_impl; [ apply H | ])); eassumption.
Qed.
Lemma eval_eval_idx_Z_Forall2 G d : forall e v1 v2, Forall2 (eval_idx_Z G d) e v1 -> Forall2 (eval_idx_Z G d) e v2 -> v1 = v2.
Proof.
intros *; rewrite <- Forall2_eq; rewrite !@Forall2_forall_iff_nth_error.
intros H1 H2 i; specialize (H1 i); specialize (H2 i); revert H1 H2.
cbv [option_eq]; break_innermost_match; try intuition congruence.
apply eval_eval_idx_Z.
Qed.
Lemma eval_eval_idx_Z_Forall2_gen G1 G2 d1 d2 (H : forall v n, eval G1 d1 v n -> eval G2 d2 v n) : forall e v1 v2, Forall2 (eval_idx_Z G1 d1) e v1 -> Forall2 (eval_idx_Z G2 d2) e v2 -> v1 = v2.
Proof.
intros; eapply eval_eval_idx_Z_Forall2; (idtac + (eapply Forall2_weaken; [ apply lift_eval_idx_Z_impl, H | ])); eassumption.
Qed.
Lemma eval_eval_idx_or_list_idx G d : forall e v1 v2, eval_idx_or_list_idx G d e v1 -> eval_idx_or_list_idx G d e v2 -> v1 = v2.
Proof.
cbv [eval_idx_or_list_idx]; intros *; break_innermost_match; try intuition congruence; intros; apply f_equal.
{
eapply eval_eval_idx_Z; eassumption.
}
{
eapply eval_eval_idx_Z_Forall2; eassumption.
}
Qed.
Lemma eval_eval_idx_or_list_idx_gen G1 G2 d1 d2 (H : forall v n, eval G1 d1 v n -> eval G2 d2 v n) : forall e v1 v2, eval_idx_or_list_idx G1 d1 e v1 -> eval_idx_or_list_idx G2 d2 e v2 -> v1 = v2.
Proof.
intros; eapply eval_eval_idx_or_list_idx; (idtac + (eapply lift_eval_idx_or_list_idx_impl; [ apply H | ])); eassumption.
Qed.
Lemma eval_eval_idx_or_list_idx_Forall2 G d : forall e v1 v2, Forall2 (eval_idx_or_list_idx G d) e v1 -> Forall2 (eval_idx_or_list_idx G d) e v2 -> v1 = v2.
Proof.
intros *; rewrite <- Forall2_eq; rewrite !@Forall2_forall_iff_nth_error.
intros H1 H2 i; specialize (H1 i); specialize (H2 i); revert H1 H2.
cbv [option_eq]; break_innermost_match; try intuition congruence.
apply eval_eval_idx_or_list_idx.
Qed.
Lemma eval_eval_idx_or_list_idx_Forall2_gen G1 G2 d1 d2 (H : forall v n, eval G1 d1 v n -> eval G2 d2 v n) : forall e v1 v2, Forall2 (eval_idx_or_list_idx G1 d1) e v1 -> Forall2 (eval_idx_or_list_idx G2 d2) e v2 -> v1 = v2.
Proof.
intros; eapply eval_eval_idx_or_list_idx_Forall2; (idtac + (eapply Forall2_weaken; [ apply lift_eval_idx_or_list_idx_impl, H | ])); eassumption.
Qed.
Section WithFixedCtx.
Context (G : symbol -> option Z).
Fixpoint eval_base_var (dag : dag) {t : base.type} : base_var t -> API.interp_type (type.base t) -> Prop := match t with | base.type.unit => fun _ _ => True | base.type.type_base base.type.Z => fun idx v => eval G dag (ExprRef idx) v | base.type.prod _ _ => fun a b => eval_base_var dag (fst a) (fst b) /\ eval_base_var dag (snd a) (snd b) | base.type.list _ => List.Forall2 (eval_base_var dag) | base.type.type_base base.type.nat => @eq _ | base.type.type_base base.type.zrange => @eq _ | _ => fun (bad : Empty_set) _ => match bad with end end%bool.
Definition eval_var (dag : dag) {t : API.type} : var t -> API.interp_type t -> Prop := match t with | type.base _ => eval_base_var dag | type.arrow _ _ => fun (bad : Empty_set) _ => match bad with end end.
Local Lemma ex_Z_of_N_iff P v : (exists n, Z.of_N n = v /\ P n) <-> (0 <= v /\ P (Z.to_N v))%Z.
Proof using Type.
split; [ intros [n [H1 H2] ] | intros [H1 H2]; exists (Z.to_N v) ]; subst; rewrite ?N2Z.id, ?Z2N.id by lia.
all: split; eauto; lia.
Qed.
Local Lemma ex_Z_of_N_iff' P v (H : (0 <= v)%Z) : (exists n, Z.of_N n = v /\ P n) <-> P (Z.to_N v).
Proof using Type.
rewrite ex_Z_of_N_iff; intuition lia.
Qed.
Lemma symex_T_app_curried_symex_T_error {t} err v d : @symex_T_app_curried t (symex_T_error err) v d = Error err.
Proof using Type.
induction t; cbn in *; break_innermost_match; try reflexivity; eauto.
Qed.
Lemma symex_T_app_curried_symex_T_bind_base_split T t v1 v2 v3 d rets d'' (H : symex_T_app_curried (@symex_T_bind_base T t v1 v2) v3 d = Success (rets, d'')) : exists rets' d', v1 d = Success (rets', d') /\ symex_T_app_curried (v2 rets') v3 d' = Success (rets, d'').
Proof using Type.
induction t; cbn [symex_T symex_T_bind_base symex_T_app_curried] in *.
all: cbv [symex_bind ErrorT.bind] in *.
all: break_innermost_match_hyps; try discriminate; eauto.
Qed.
Lemma symex_T_app_curried_symex_T_bind_base_split_err T t v1 v2 v3 d err (H : symex_T_app_curried (@symex_T_bind_base T t v1 v2) v3 d = Error err) : v1 d = Error err \/ exists rets' d', v1 d = Success (rets', d') /\ symex_T_app_curried (v2 rets') v3 d' = Error err.
Proof using Type.
induction t; cbn [symex_T symex_T_bind_base symex_T_app_curried] in *.
all: cbv [symex_bind ErrorT.bind] in *.
all: break_innermost_match_hyps; try discriminate; eauto.
left; congruence.
Qed.
Lemma lift_eval_base_var_impl d1 d2 (H : forall v n, eval G d1 v n -> eval G d2 v n) : forall t v n, @eval_base_var d1 t v n -> @eval_base_var d2 t v n.
Proof using Type.
induction t; cbn [base_var eval_base_var]; break_innermost_match; intros; destruct_head'_ex; destruct_head'_and; subst; eauto using Forall2_weaken.
Qed.
Lemma lift_eval_var_impl d1 d2 (H : forall v n, eval G d1 v n -> eval G d2 v n) : forall t v n, @eval_var d1 t v n -> @eval_var d2 t v n.
Proof using Type.
induction t; cbn [var eval_var]; eauto using lift_eval_base_var_impl.
Qed.
Lemma RevealConstant_correct idx d d' v (H : RevealConstant idx d = Success (v, d')) (d_ok : gensym_dag_ok G d) : eval G d (ExprRef idx) (Z.of_N v) /\ d = d'.
Proof using Type.
cbv [RevealConstant] in *; break_innermost_match_hyps; inversion_ErrorT; inversion_prod; subst; split; trivial; [].
pose proof Heqe as Hx.
cbv [reveal reveal_step] in Hx.
break_innermost_match_hyps; inversion Hx; subst.
eapply map_eq_nil in H1; subst.
repeat (eauto || econstructor).
rewrite Z2N.id; eauto using Zle_bool_imp_le.
Qed.
Lemma RevealWidth_correct idx d d' v (H : RevealWidth idx d = Success (v, d')) (d_ok : gensym_dag_ok G d) : eval G d (ExprRef idx) (2 ^ Z.of_N v) /\ d = d'.
Proof using Type.
cbv [RevealWidth symex_bind ErrorT.bind symex_return symex_error] in *.
break_innermost_match_hyps; inversion_ErrorT; inversion_prod; subst.
eapply RevealConstant_correct in Heqe; intuition idtac.
eapply Neqb_ok in Heqb; subst.
epose proof N2Z.inj_pow 2 (N.log2 n) as HH.
rewrite <-Heqb in HH.
rewrite HH in H.
exact H.
Qed.
(** Makes use of [eval_merge] and [eval_merge_node] lemmas, leaving over evars for unknown evaluation values, reading off which [merge] and [merge_node] constructs to pose proofs about from the goal and hypotheses *)
Local Ltac saturate_eval_merge_step := first [ eassumption | let saturate_lem eval_lem mergev do_change do_clear := (** ensure that we do innermost merge first *) (let e := lazymatch mergev with | merge_node ?e ?d => e | merge ?e ?d => e end in lazymatch e with | context[merge_node] => fail | context[merge] => fail | _ => idtac end); let n := open_constr:(_) in let G := open_constr:(_) in let T := open_constr:(_) in cut T; [ let H := fresh in intro H; let T' := open_constr:(_) in cut T'; [ let H' := fresh in intro H'; let H'' := fresh in pose proof (eval_lem G n H' H); cbv beta zeta in *; do_change (); let k := fresh in set (k := mergev) in *; clearbody k | do_clear () ] | do_clear () ] in let saturate_of T do_clear := match T with | context[merge_node (@pair ?A ?B ?op ?args) ?d] => saturate_lem (fun G n H' H => eval_merge_node G d H' op args n H) (merge_node (@pair A B op args) d) ltac:(fun _ => progress change (op, args) with (@pair A B op args) in * ) do_clear | context[merge ?e ?d] => saturate_lem (fun G n H' H => eval_merge G e n d H' H) (merge e d) ltac:(fun _ => idtac) do_clear end in match goal with | [ |- ?T ] => saturate_of T ltac:(fun _ => idtac) | [ H : ?T |- _ ] => saturate_of T ltac:(fun _ => clear H) end | progress destruct_head'_and | solve [ eauto 100 ] ].
Local Ltac saturate_eval_merge := repeat saturate_eval_merge_step.
Lemma App_correct {opts : symbolic_options_computed_opt} {descr:description} n d (Hdag : gensym_dag_ok G d) i d' (H : App n d = Success (i, d')) v (Heval : eval_node G d n v) : eval G d' (ExprRef i) v /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof using Type.
cbv [App] in *.
inversion_ErrorT.
match goal with | H : context [simplify ?d ?n] |- _ => unique pose proof (fun G => eval_simplify G d n) end.
specialize_under_binders_by eassumption.
match goal with | H : context [merge ?e ?d] |- _ => edestruct (fun G n => eval_merge G e n d) as (?&?&?); try eassumption end.
inversion_prod; subst; eauto 9.
Qed.
(* workaround: using cbn instead of this lemma makes Qed hang after next destruct *)
Lemma unfold_symex_bind {A B} ma amb : @symex_bind A B ma amb = ltac:(let t := eval cbv [symex_bind ErrorT.bind] in (@symex_bind A B ma amb) in exact t).
Proof using Type.
exact eq_refl.
Qed.
Theorem symex_ident_correct {opts : symbolic_options_computed_opt} {descr:description} {t} (idc : ident t) (d : dag) (input_var_data : type.for_each_lhs_of_arrow var t) (input_runtime_var : type.for_each_lhs_of_arrow API.interp_type t) (* N.B. We need [Hinput] for the [gensym_dag_ok] conclusion, because we need to know that we can evaluate the indices in the arguments w.r.t. the dag for, e.g., [eval_merge_node] *) (Hinput : type.and_for_each_lhs_of_arrow (@eval_var d) input_var_data input_runtime_var) (rets : base_var (type.final_codomain t)) (d' : dag) (H : symex_T_app_curried (symex_ident idc) input_var_data d = Success (rets, d')) (d_ok : gensym_dag_ok G d) : eval_base_var d' rets (type.app_curried (Compilers.ident_interp idc) input_runtime_var) /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof using Type.
cbv [symex_ident] in H; break_innermost_match_hyps.
all: cbn [type.app_curried type.and_for_each_lhs_of_arrow Compilers.ident_interp symex_T_app_curried type.for_each_lhs_of_arrow] in *.
all: cbn [API.interp_type base_var type.final_codomain var] in *.
all: destruct_head'_prod; destruct_head'_unit.
all: cbv [symex_T_error symex_error symex_return ident.eagerly ident.literal] in *.
all : repeat match goal with | H : context[symex_bind _ _] |- _ => rewrite !unfold_symex_bind in H | _ => destruct_one_head'_and | _ => inversion_ErrorT_step | H : App ?e ?d = Success (?i, ?d') |- _ => eapply (App_correct e d ltac:(eassumption)) in H; [|clear H..] | [ H : RevealWidth _ _ = Success _ |- _ ] => eapply RevealWidth_correct in H; [ | clear H; try eassumption .. ] | [ H : RevealConstant _ _ = Success _ |- _ ] => eapply RevealConstant_correct in H; [ | clear H; try eassumption .. ] | H : eval ?a ?b ?c ?x, G : eval ?a ?b ?c ?y |- _ => epose proof eval_eval _ _ _ _ H _ G; clear G | _ => inversion_prod_step | _ => break_innermost_match_hyps_step | _ => progress cbn [eval_base_var eval_var fst snd List.map] in * | _ => progress subst | |- eval _ _ (ExprRef _) _ => solve[eauto 99 with nocore] | |- eval_node _ _ (?op, ?args) _ => let h := Head.head op in is_constructor h; econstructor | |- interp_op _ ?op ?args = Some _ => let h := Head.head op in is_constructor h; exact eq_refl | |- Forall2 _ _ _ => econstructor end.
all : Tactics.ssplit; eauto 9.
all : match goal with | |- context[eval _ _ _ _] => idtac (* solve below *) | _ => solve [ repeat first [ solve [ eauto using length_Forall2, Forall.Forall2_firstn, Forall.Forall2_skipn, Forall.Forall2_combine, Forall2_app, Forall2_rev ] | eapply Forall.Forall2_combine; [ | eassumption .. ]; eauto | rewrite Forall2_eq | rewrite Forall.Forall2_repeat_iff | now apply Forall.Forall2_forall_iff'' ] ] end.
all: match goal with (* eval_same_expr_goal *) | |- eval G ?d ?e ?v => match goal with H : eval G d e ?v' |- _ => let Heq := fresh in enough (Heq : v = v') by (rewrite Heq; exact H); try clear H e end | |- eval G ?d ?e ?v => let H := fresh in let v' := open_constr:(_) in eassert (eval G d e v') by (eauto 99 with nocore); let Heq := fresh in enough (Heq : v = v') by (rewrite Heq; exact H); try clear H e end.
all : cbv [fold_right Z.add_with_carry Z.truncating_shiftl] in *.
all : repeat (rewrite ?Z.mul_split_mod, ?Z.mul_split_div, ?Z.mul_high_div, ?Z.add_get_carry_full_div, ?Z.add_get_carry_full_mod, ?Z.sub_add_distr, ?Z.add_with_get_carry_full_div, ?Z.add_with_get_carry_full_mod, ?Z.sub_get_borrow_full_div, ?Z.sub_get_borrow_full_mod, ?Z.sub_0_r, ?Z.sub_with_get_borrow_full_div, ?Z.sub_with_get_borrow_full_mod, ?Z.add_0_r, ?Z.mul_1_r, ?Z.lor_0_r, ?Z.land_m1_r, ?Z.add_opp_r, ?Z.add_assoc, ?Z.shiftr_0_r, ?Z.shiftr_div_pow2, ?Z.land_ones; push_Zmod; pull_Zmod); try Lia.lia.
all: repeat first [ progress cbn [fst snd List.map] in * | progress subst | progress split_andb | progress reflect_hyps | progress cbv [ident.cast2] | match goal with | [ H : _ = fst ?x |- _ ] => is_var x; destruct x | [ H : _ = snd ?x |- _ ] => is_var x; destruct x end ].
all : match goal with | [ |- context[ident.cast ?r ?v] ] => rewrite !ident.platform_specific_cast_0_is_mod by match goal with | [ H : Z.succ ?v = (2^Z.log2 (Z.succ ?v))%Z |- (0 <= ?v)%Z ] => clear -H; destruct v; try lia; rewrite Z.log2_nonpos, Z.pow_0_r in H by lia; lia end end.
all : rewrite Z2N.id by eapply Z.log2_nonneg.
all : match goal with H : Z.succ _=_|-_=> rewrite <-H, Z.add_1_r end; trivial.
all : fail.
Qed.
Theorem symex_expr_correct {opts : symbolic_options_computed_opt} {descr:description} {t} (expr1 : API.expr (var:=var) t) (expr2 : API.expr (var:=API.interp_type) t) (d : dag) (input_var_data : type.for_each_lhs_of_arrow var t) (input_runtime_var : type.for_each_lhs_of_arrow API.interp_type t) (Hinputs : type.and_for_each_lhs_of_arrow (@eval_var d) input_var_data input_runtime_var) (rets : base_var (type.final_codomain t)) (d' : dag) GG (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) GG -> eval_var d v1 v2) (Hwf : API.wf GG expr1 expr2) (H : symex_T_app_curried (symex_expr expr1) input_var_data d = Success (rets, d')) (d_ok : gensym_dag_ok G d) : eval_base_var d' rets (type.app_curried (API.interp expr2) input_runtime_var) /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof using Type.
revert dependent descr; revert dependent d; revert dependent d'; revert dependent input_var_data; revert dependent input_runtime_var.
induction Hwf; intros; cbn [symex_expr] in *.
all: repeat first [ match goal with (* ident case *) | [ |- context[expr.Ident] ] => eapply @symex_ident_correct; eassumption (* var case *) | [ HIn : List.In (existT _ ?t (?v1, ?v2)) _ |- context[expr.Var] ] => is_var t; specialize (HG t _ _ HIn); destruct t (* abs case, eventually *) | [ H : context[_ /\ gensym_dag_ok _ /\ (forall e n, _ -> _)] |- context[expr.Abs] ] => eapply H; try eassumption; clear H; [] end | match goal with | [ H : symex_T_app_curried (symex_T_bind_base _ _) _ _ = Success _ |- _ ] => apply symex_T_app_curried_symex_T_bind_base_split in H | [ H : forall v, (forall t v1 v2, existT _ _ _ = _ \/ _ -> _) -> _ |- _ ] => specialize (fun H3 v H2 => H v (fun t v1 v2 pf => match pf with | or_introl pf => H2 t v1 v2 pf | or_intror pf => H3 t v1 v2 pf end)) end | exfalso; assumption | progress subst | progress destruct_head'_and | progress destruct_head'_ex | progress inversion_ErrorT | progress inversion_pair | progress cbn [symex_T_app_curried symex_T_return eval_var type.app_curried] in * | progress cbn [type.and_for_each_lhs_of_arrow type.for_each_lhs_of_arrow fst snd List.In eq_rect] in * | progress cbn [type.final_codomain base_var] in * | progress cbv [symex_return] in * | rewrite @symex_T_app_curried_symex_T_error in * | solve [ auto ] | break_innermost_match_hyps_step | progress specialize_by_assumption | progress guarded_specialize_dep_under_binders_by ltac:(idtac; lazymatch goal with | [ |- True ] => exact I | [ |- unit ] => exact tt | [ |- _ /\ _ ] => split | [ |- _ * _ ] => split end) ltac:(fun H => lazymatch type of H with | context[forall x : True, _] => idtac | context[forall x : unit, _] => idtac | context[forall x : _ * _, _] => idtac | context[forall x : _ /\ _, _] => idtac end) | progress guarded_specialize_under_binders_by ltac:(idtac; match goal with | [ H : symex_T_app_curried _ _ _ = Success _ |- symex_T_app_curried _ _ _ = Success _ ] => exact H | [ H : symex_expr _ _ = Success _ |- symex_expr _ _ = Success _ ] => exact H end) ltac:(fun H => lazymatch type of H with | context[symex_T_app_curried _ _ _ = Success _ -> _] => idtac | context[symex_expr _ _ = Success _ -> _] => idtac end) | progress guarded_specialize_under_binders_by ltac:(idtac; match goal with | [ H : type.and_for_each_lhs_of_arrow _ _ _ |- type.and_for_each_lhs_of_arrow _ _ _ ] => first [ exact H | eapply Wf.Compilers.type.and_for_each_lhs_of_arrow_Proper_impl; [ cbv [forall_relation pointwise_relation Basics.impl] .. | exact H ]; try eapply lift_eval_var_impl; eauto ] | [ H : eval_base_var _ _ _ |- eval_base_var _ _ _ ] => exact H | [ |- forall t v1 v2, existT _ _ _ = existT _ t (v1, v2) -> _ ] => intros; inversion_sigma; subst; cbn [eq_rect] in *; inversion_prod; subst; eassumption end) ltac:(fun H => lazymatch type of H with | context[type.and_for_each_lhs_of_arrow _ _ _ -> _] => idtac | context[eval_base_var _ _ _ -> _] => idtac | context[(forall t v1 v2, existT _ _ _ = existT _ t (v1, v2) -> _) -> _] => idtac end) | progress specialize_under_binders_by eauto using lift_eval_var_impl ].
Qed.
Lemma symex_expr_App_curried {opts : symbolic_options_computed_opt} {descr:description} {t} (e : API.expr t) input_var_data d : symex_expr (invert_expr.App_curried e (type.map_for_each_lhs_of_arrow (fun t v => ($$v)%expr) input_var_data)) d = symex_T_app_curried (symex_expr e) input_var_data d.
Proof using Type.
induction t; cbn [invert_expr.App_curried symex_T_app_curried type.map_for_each_lhs_of_arrow]; destruct_head_hnf' prod; destruct_head_hnf' unit; cbn [fst snd]; try reflexivity.
match goal with H : _ |- _ => rewrite H; clear H end.
repeat first [ progress cbn [symex_expr var] in * | progress break_innermost_match | solve [ destruct_head'_Empty_set ] ].
cbv [symex_T_return symex_return] in *.
let LHS := match goal with |- ?LHS = _ => LHS end in destruct LHS as [ [? ?] | ? ] eqn:H; [ apply symex_T_app_curried_symex_T_bind_base_split in H | apply symex_T_app_curried_symex_T_bind_base_split_err in H ].
all: destruct_head'_or; destruct_head'_ex; destruct_head'_and; congruence.
Qed.
Lemma symex_expr_smart_App_curried {opts : symbolic_options_computed_opt} {descr:description} {t} (e : API.expr t) input_var_data d : symex_expr (invert_expr.smart_App_curried e input_var_data) d = symex_T_app_curried (symex_expr e) input_var_data d.
Proof using Type.
induction e; cbn [invert_expr.smart_App_curried]; rewrite ?symex_expr_App_curried; try reflexivity.
match goal with H : _ |- _ => rewrite H; clear H end.
cbn [symex_expr symex_T_app_curried]; break_innermost_match; cbn [fst snd]; reflexivity.
Qed.
Theorem symex_PHOAS_PHOAS_correct {opts : symbolic_options_computed_opt} {t} (expr : API.Expr t) (d : dag) (input_var_data : type.for_each_lhs_of_arrow var t) (input_runtime_var : type.for_each_lhs_of_arrow API.interp_type t) (Hinputs : type.and_for_each_lhs_of_arrow (@eval_var d) input_var_data input_runtime_var) (rets : base_var (type.final_codomain t)) (d' : dag) (Hwf : API.Wf expr) (H : symex_PHOAS_PHOAS expr input_var_data d = Success (rets, d')) (d_ok : gensym_dag_ok G d) : eval_base_var d' rets (type.app_curried (API.Interp expr) input_runtime_var) /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof using Type.
cbv [symex_PHOAS_PHOAS] in H.
rewrite symex_expr_smart_App_curried in H.
eapply symex_expr_correct with (GG:=[]); try eassumption; cbn [List.In]; try eapply Hwf; try now intros; exfalso.
Qed.
Fixpoint build_base_runtime (t : base.type) (values : list (Z + list Z)) : option (base.interp t * list (Z + list Z)) := match t, values return option (base.interp t * list (Z + list Z)) with | base.type.unit, _ => Some (tt, values) | base.type.type_base base.type.Z, inl val :: values => Some (val, values) | base.type.prod A B, _ => (vA <- build_base_runtime A values; let '(vA, values) := vA in vB <- build_base_runtime B values; let '(vB, values) := vB in Some ((vA, vB), values)) | base.type.list (base.type.type_base base.type.Z), inr value :: values => Some (value, values) | base.type.type_base base.type.Z, inr _ :: _ | base.type.list (base.type.type_base base.type.Z), inl _ :: _ | base.type.type_base _, [] | base.type.list _, [] | base.type.type_base _, _ | base.type.option _, _ | base.type.list _, _ :: _ => None end%option.
Definition build_runtime (t : API.type) (values : list (Z + list Z)) : option (API.interp_type t * list (Z + list Z)) := match t with | type.base t => build_base_runtime t values | type.arrow _ _ => None end.
Fixpoint build_input_runtime (t : API.type) (values : list (Z + list Z)) : option (type.for_each_lhs_of_arrow API.interp_type t * list (Z + list Z)) := match t with | type.base _ => Some (tt, values) | type.arrow A B => (vA <- build_runtime A values; let '(vA, values) := vA in vB <- build_input_runtime B values; let '(vB, values) := vB in Some ((vA, vB), values)) end%option.
Fixpoint simplify_base_runtime {t : base.type} : base.interp t -> option (list (Z + list Z)) := match t return base.interp t -> option (list (Z + list Z)) with | base.type.unit => fun 'tt => Some [] | base.type.type_base base.type.Z => fun val => Some [inl val] | base.type.prod A B => fun ab => (a <- simplify_base_runtime (fst ab); b <- simplify_base_runtime (snd ab); Some (a ++ b)) | base.type.list (base.type.type_base base.type.Z) => fun ls : list Z => Some [inr ls] | base.type.list _ | base.type.type_base _ | base.type.option _ => fun _ => None end%option.
Lemma build_base_var_runtime_gen d (inputs : list (idx + list idx)) (runtime_inputs : list (Z + list Z)) (Hinputs : Forall2 (eval_idx_or_list_idx G d) inputs runtime_inputs) t : match build_base_var t inputs, build_base_runtime t runtime_inputs with | Success (v1, ls1), Some (v2, ls2) => eval_base_var d v1 v2 /\ Forall2 (eval_idx_or_list_idx G d) ls1 ls2 | Success _, None | Error _, Some _ => False | Error _, None => True end.
Proof using Type.
revert inputs runtime_inputs Hinputs; induction t; cbn [build_base_var build_base_runtime]; intros; break_innermost_match.
all: repeat first [ exact I | progress subst | progress cbn [eval_idx_or_list_idx eval_base_var] in * | progress cbv [Crypto.Util.Option.bind Rewriter.Util.Option.bind ErrorT.bind] in * | exfalso; assumption | solve [ auto ] | match goal with | [ H : Forall2 _ [] _ |- _ ] => inversion H; clear H | [ H : Forall2 _ _ [] |- _ ] => inversion H; clear H | [ H : Forall2 _ (_ :: _) _ |- _ ] => inversion H; clear H | [ H : Forall2 _ _ (_ :: _) |- _ ] => inversion H; clear H end | progress break_innermost_match_hyps | progress specialize_by_assumption | progress destruct_head'_and | match goal with | [ H : context[match build_base_var ?t1 _ with _ => _ end] |- context[build_base_var ?t1 ?inputs] ] => specialize (H inputs) | [ H : context[match build_base_runtime ?t1 _ with _ => _ end] |- context[build_base_runtime ?t1 ?inputs] ] => specialize (H inputs) end ].
Qed.
Lemma build_var_runtime_gen d (inputs : list (idx + list idx)) (runtime_inputs : list (Z + list Z)) (Hinputs : Forall2 (eval_idx_or_list_idx G d) inputs runtime_inputs) t : match build_var t inputs, build_runtime t runtime_inputs with | Success (v1, ls1), Some (v2, ls2) => eval_var d v1 v2 /\ Forall2 (eval_idx_or_list_idx G d) ls1 ls2 | Success _, None | Error _, Some _ => False | Error _, None => True end.
Proof using Type.
destruct t as [t|s d']; [ pose proof (build_base_var_runtime_gen _ _ _ Hinputs t) | ].
all: cbv [build_var build_runtime]; break_innermost_match; try assumption; try exact I.
Qed.
Lemma build_input_var_runtime_gen d (inputs : list (idx + list idx)) (runtime_inputs : list (Z + list Z)) (Hinputs : Forall2 (eval_idx_or_list_idx G d) inputs runtime_inputs) t : match build_input_var t inputs, build_input_runtime t runtime_inputs with | Success (v1, ls1), Some (v2, ls2) => type.and_for_each_lhs_of_arrow (@eval_var d) v1 v2 /\ Forall2 (eval_idx_or_list_idx G d) ls1 ls2 | Success _, None | Error _, Some _ => False | Error _, None => True end.
Proof using Type.
revert inputs runtime_inputs Hinputs; induction t as [|s _ d' IHd]; cbn [build_input_runtime build_input_var build_var type.and_for_each_lhs_of_arrow] in *; intros; auto; [].
cbv [Crypto.Util.Option.bind Rewriter.Util.Option.bind ErrorT.bind].
pose proof (build_var_runtime_gen _ _ _ Hinputs s).
break_innermost_match_hyps; try exact I; try (now exfalso); [].
destruct_head'_and.
let l := match goal with |- context[build_input_var _ ?l] => l end in specialize (IHd l _ ltac:(eassumption)).
break_innermost_match_hyps; try exact I; try (now exfalso); [].
destruct_head'_and; auto.
Qed.
Lemma simplify_base_var_runtime_gen {t} d b v (H : eval_base_var d b v) : match @simplify_base_var t b, @simplify_base_runtime t v with | Success rets, Some val => Forall2 (eval_idx_or_list_idx G d) rets val | Success _, None | Error _, Some _ => False | Error _, None => True end.
Proof using Type.
induction t; cbn [eval_base_var simplify_base_var simplify_base_runtime] in *; break_innermost_match.
all: repeat first [ assumption | exact I | match goal with | [ |- Forall2 _ _ _ ] => constructor end | progress destruct_head'_and | progress destruct_head_hnf' prod | progress cbn [fst snd] in * | progress cbv [Crypto.Util.Option.bind Rewriter.Util.Option.bind ErrorT.bind] in * | match goal with | [ IH : context[simplify_base_var _] |- context[simplify_base_var ?b] ] => specialize (IH b _ ltac:(eassumption)) end | progress break_innermost_match_hyps | rewrite Forall.Forall2_map_map_iff | solve [ eauto using Forall2_app ] ].
Qed.
Theorem symex_PHOAS_correct {opts : symbolic_options_computed_opt} {t} (expr : API.Expr t) (d : dag) (inputs : list (idx + list idx)) (runtime_inputs : list (Z + list Z)) (Hinputs : List.Forall2 (eval_idx_or_list_idx G d) inputs runtime_inputs) (rets : list (idx + list idx)) (d' : dag) (Hwf : API.Wf expr) (H : symex_PHOAS expr inputs d = Success (rets, d')) (d_ok : gensym_dag_ok G d) : (exists (input_runtime_var : type.for_each_lhs_of_arrow API.interp_type t) (runtime_rets : list (Z + list Z)), build_input_runtime t runtime_inputs = Some (input_runtime_var, []) /\ simplify_base_runtime (type.app_curried (API.Interp expr) input_runtime_var) = Some runtime_rets /\ List.Forall2 (eval_idx_or_list_idx G d') rets runtime_rets) /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof using Type.
cbv [symex_PHOAS ErrorT.bind] in H; break_innermost_match_hyps; try discriminate.
destruct (build_input_runtime t runtime_inputs) as [ [input_runtime_var [|] ] | ] eqn:H'; [ | exfalso.. ].
all: lazymatch goal with | [ H : symex_PHOAS_PHOAS _ _ _ = Success _, input_runtime_var : type.for_each_lhs_of_arrow API.interp_type _ |- _ ] => apply @symex_PHOAS_PHOAS_correct with (input_runtime_var:=input_runtime_var) in H; try assumption; [ | clear H .. ] | [ |- False ] => idtac end.
all: repeat first [ progress break_innermost_match_hyps | progress destruct_head'_and | progress subst | progress inversion_option | progress inversion_prod | discriminate | assumption | apply (f_equal (@Some _)) | apply (f_equal2 (@pair _ _)) | reflexivity | progress reflect_hyps | match goal with | [ H : Success _ = Success _ |- _ ] => inversion H; clear H | [ H : symex_PHOAS_PHOAS _ _ _ = _ |- _ ] => apply symex_PHOAS_PHOAS_correct in H; [ | assumption.. ] | [ |- exists a b, ?v = Some (a, _) /\ _ = Some b /\ _ ] => let av := fresh in destruct v as [ [av ?] |] eqn:?; [ exists av | exfalso ] | [ |- exists a, _ /\ ?v = Some a /\ _ ] => let av := fresh in destruct v as [ av |] eqn:?; [ exists av | exfalso ] | [ H : List.length ?l = 0%nat |- _ ] => is_var l; destruct l; cbn in H | [ H : Forall2 _ [] _ |- _ ] => inversion H; clear H | [ H : Forall2 _ _ [] |- _ ] => inversion H; clear H | [ H : Forall2 _ (_ :: _) _ |- _ ] => inversion H; clear H | [ H : Forall2 _ _ (_ :: _) |- _ ] => inversion H; clear H end | apply conj | progress intros | match goal with | [ H : build_input_runtime ?t ?ri = _, H' : build_input_var ?t ?i = _ |- _ ] => let H'' := fresh in pose proof (build_input_var_runtime_gen _ i ri ltac:(eassumption) t) as H''; rewrite H, H' in H''; clear H H' | [ H : simplify_base_var ?b = _, H' : simplify_base_runtime ?v = _ |- _ ] => let H'' := fresh in pose proof (simplify_base_var_runtime_gen _ b v ltac:(eassumption)) as H''; rewrite H, H' in H''; clear H H' end ].
Qed.
End WithFixedCtx.
Definition val_or_list_val_matches_spec (arg : Z + list Z) (spec : option nat) := match arg, spec with | inl _, None => True | inr ls, Some len => List.length ls = len | inl _, Some _ | inr _, None => False end.
Local Ltac build_runtime_ok_t_step := first [ progress subst | progress destruct_head'_unit | progress inversion_option | progress inversion_prod | progress destruct_head'_prod | progress destruct_head'_and | progress destruct_head'_ex | progress cbv [Crypto.Util.Option.bind Rewriter.Util.Option.bind ErrorT.bind] in * | progress cbn [val_or_list_val_matches_spec] in * | progress cbn [fst snd ZRange.type.base.option.is_bounded_by type.andb_bool_for_each_lhs_of_arrow] in * | progress split_andb | progress break_innermost_match_hyps | rewrite <- !List.app_assoc in * | discriminate | progress specialize_by_assumption | match goal with | [ H : ?x = Some _ |- context[?x] ] => rewrite H | [ H : forall extra, ?f (?x ++ extra) = Some _ |- context[?f (?x ++ _)] ] => rewrite !H | [ H : Success _ = Success _ |- _ ] => inversion H; clear H | [ |- exists args, ?extra = args ++ ?extra /\ _ /\ _ ] => exists nil | [ |- exists args, ?x :: ?extra = args ++ ?extra /\ _ /\ _ ] => exists (x :: nil) | [ |- exists args, ?x ++ ?extra = args ++ ?extra /\ _ /\ _ ] => exists x | [ |- exists args, ?x ++ (?y ++ ?extra) = args ++ ?extra /\ _ /\ _ ] => exists (x ++ y); rewrite !List.app_assoc | [ IH : forall a b c d e, simplify_base_type _ _ = Success _ -> build_base_runtime _ _ = Some _ -> _ |- _ ] => specialize (IH _ _ _ _ _ ltac:(eassumption) ltac:(eassumption)) | [ IH : forall a b c d e, simplify_type _ _ = Success _ -> build_runtime _ _ = Some _ -> _ |- _ ] => specialize (IH _ _ _ _ _ ltac:(eassumption) ltac:(eassumption)) | [ IH : forall a b c d e, simplify_input_type _ _ = Success _ -> build_input_runtime _ _ = Some _ -> _ |- _ ] => specialize (IH _ _ _ _ _ ltac:(eassumption) ltac:(eassumption)) | [ |- Forall2 _ (_ ++ _) (_ ++ _) ] => apply Forall2_app | [ H : FoldBool.fold_andb_map _ _ _ = true |- List.length _ = List.length _ ] => apply FoldBool.fold_andb_map_length in H end | progress intros | apply conj | reflexivity | (idtac + symmetry); assumption ].
Lemma build_base_runtime_ok t arg_bounds args types PHOAS_args extra (H : simplify_base_type t arg_bounds = Success types) (Hargs : build_base_runtime t args = Some (PHOAS_args, extra)) (HPHOAS_args : ZRange.type.base.option.is_bounded_by arg_bounds PHOAS_args = true) : exists args', args = args' ++ extra /\ (forall extra', build_base_runtime t (args' ++ extra') = Some (PHOAS_args, extra')) /\ Forall2 val_or_list_val_matches_spec args' types.
Proof using Type.
revert args extra types H Hargs HPHOAS_args; induction t; intros; cbn [simplify_base_type build_base_runtime type.for_each_lhs_of_arrow Language.Compilers.base.interp] in *; break_innermost_match_hyps; repeat first [ build_runtime_ok_t_step | constructor ].
Qed.
Lemma build_runtime_ok t arg_bounds args types PHOAS_args extra (H : simplify_type t arg_bounds = Success types) (Hargs : build_runtime t args = Some (PHOAS_args, extra)) (HPHOAS_args : ZRange.type.option.is_bounded_by arg_bounds PHOAS_args = true) : exists args', args = args' ++ extra /\ (forall extra', build_runtime t (args' ++ extra') = Some (PHOAS_args, extra')) /\ Forall2 val_or_list_val_matches_spec args' types.
Proof using Type.
revert args extra types H Hargs HPHOAS_args; induction t; intros; cbn [simplify_type build_runtime type.for_each_lhs_of_arrow] in *; [ eapply build_base_runtime_ok; eassumption | discriminate ].
Qed.
Lemma build_input_runtime_ok t arg_bounds args input_types PHOAS_args extra (H : simplify_input_type t arg_bounds = Success input_types) (Hargs : build_input_runtime t args = Some (PHOAS_args, extra)) (HPHOAS_args : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) arg_bounds PHOAS_args = true) : exists args', args = args' ++ extra /\ (forall extra', build_input_runtime t (args' ++ extra') = Some (PHOAS_args, extra')) /\ Forall2 val_or_list_val_matches_spec args' input_types.
Proof using Type.
revert args extra input_types H Hargs HPHOAS_args; induction t as [|t1 ? t2]; intros; [ eexists [] | pose proof (build_runtime_ok t1) ]; cbn [simplify_input_type build_input_runtime type.for_each_lhs_of_arrow] in *; repeat first [ build_runtime_ok_t_step | constructor ].
Qed.
Lemma build_input_runtime_ok_nil t arg_bounds args input_types PHOAS_args (H : simplify_input_type t arg_bounds = Success input_types) (Hargs : build_input_runtime t args = Some (PHOAS_args, [])) (HPHOAS_args : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) arg_bounds PHOAS_args = true) : Forall2 val_or_list_val_matches_spec args input_types.
Proof using Type.
pose proof (build_input_runtime_ok t arg_bounds args input_types PHOAS_args [] H Hargs HPHOAS_args).
destruct_head'_ex; destruct_head'_and; subst; rewrite app_nil_r; assumption.
Qed.
Definition ctx_set (s : symbol) (v : Z) (G : symbol -> option Z) : symbol -> option Z := fun idx => if (idx =? s)%N then Some v else G idx.
Module dagG.
Definition M A := (symbol -> option Z) * dag -> A * ((symbol -> option Z) * dag).
End dagG.
Definition merge_fresh_symbol_G {descr:description} (v : Z) : dagG.M idx := fun '(G, d) => let '(idx, d) := merge_fresh_symbol d in (idx, (ctx_set idx v G, d)).
Definition build_inputarray_G {descr:description} (vals : list Z) : dagG.M (list idx) := List.foldmap merge_fresh_symbol_G vals.
Fixpoint build_inputs_G {descr:description} (vals : list (Z + list Z)) : dagG.M (list (idx + list idx)) := match vals with | [] => fun st => ([], st) | inr vs :: args => fun st => let '(idxs, st) := build_inputarray_G vs st in let '(rest, st) := build_inputs_G args st in (inr idxs :: rest, st) | inl v :: args => fun st => let '(idx, st) := merge_fresh_symbol_G v st in let '(rest, st) := build_inputs_G args st in (inl idx :: rest, st) end.
Fixpoint dag_gensym_n_G {descr:description} (vals : list Z) : dagG.M (list idx) := match vals with | nil => fun st => ([], st) | v :: vs => fun st => let '(idx, st) := merge_fresh_symbol_G v st in let '(rest, st) := dag_gensym_n_G vs st in (idx :: rest, st) end.
Module G.
Definition M A := (symbol -> option Z) * symbolic_state -> option (A * ((symbol -> option Z) * symbolic_state)).
Definition lift {A} (v : Symbolic.M A) : M A := fun '(G, s) => match v s with | Success (v, s) => Some (v, (G, s)) | Error _ => None end.
Definition ret {A} (v : A) : M A := fun s => Some (v, s).
Definition bind {A B} (v : M A) (f : A -> M B) : M B := fun s => (v <- v s; let '(v, s) := v in f v s)%option.
End G.
Declare Scope GM_scope.
Delimit Scope GM_scope with GM.
Bind Scope GM_scope with G.M.
Notation "x <- y ; f" := (G.bind y (fun x => f%GM)) : GM_scope.
Definition lift_dag_G {A} (v : dagG.M A) : G.M A := fun '(G, s) => let '(v, (G, d)) := v (G, s.(dag_state)) in Some (v, (G, update_dag_with s (fun _ => d))).
Definition SetRegFresh_G {opts : symbolic_options_computed_opt} {descr:description} (r : REG) (v : Z) : G.M idx := (idx <- lift_dag_G (merge_fresh_symbol_G v); _ <- G.lift (SetReg r idx); G.ret idx)%GM.
Fixpoint build_merge_base_addresses_G {opts : symbolic_options_computed_opt} {descr:description} {dereference_scalar:bool} (items : list (idx + list idx)) (reg_available : list REG) (runtime_reg : list Z) {struct items} : G.M (list ((REG + idx) + idx)) := match items, reg_available, runtime_reg with | [], _, _ | _, [], _ => G.ret [] | _, _, [] => fun _ => None | inr idxs :: xs, r :: reg_available, rv :: runtime_reg => (base <- SetRegFresh_G r rv; (* note: overwrites initial value *) addrs <- G.lift (build_merge_array_addresses base idxs); rest <- build_merge_base_addresses_G (dereference_scalar:=dereference_scalar) xs reg_available runtime_reg; G.ret (inr base :: rest)) | inl idx :: xs, r :: reg_available, rv :: runtime_reg => (addr <- (if dereference_scalar then (addr <- SetRegFresh_G r rv; G.lift (fun s => Success (inr addr, update_mem_with s (cons (addr, idx))))) else (G.lift (_ <- SetReg r idx; (* note: overwrites initial value *) ret (inl r)))); rest <- build_merge_base_addresses_G (dereference_scalar:=dereference_scalar) xs reg_available runtime_reg; G.ret (inl addr :: rest)) end%GM%N%x86symex.
Definition compute_stack_base_G {opts : symbolic_options_computed_opt} {descr:description} (rsp_val : Z) (stack_size : nat) : G.M idx := (rsp_idx <- SetRegFresh_G rsp rsp_val; stack_size <- G.lift (Symbolic.App (zconst 64 (-8 * Z.of_nat stack_size), [])); G.lift (Symbolic.App (add 64%N, [rsp_idx; stack_size])))%GM.
Definition build_merge_stack_placeholders_G {opts : symbolic_options_computed_opt} {descr:description} (rsp_val : Z) (stack_vals : list Z) : G.M idx := (let stack_size := List.length stack_vals in stack_placeholders <- lift_dag_G (build_inputarray_G stack_vals); stack_base <- compute_stack_base_G rsp_val stack_size; _ <- G.lift (build_merge_array_addresses stack_base stack_placeholders); G.ret stack_base)%GM.
(* TODO: Move to SymbolicProofs? *)
Local Lemma mapM_Proper_inv {A B B'} R (Hinv : _ -> Prop) (f : A -> M B) (f' : A -> M B') (Hf : forall a st, Hinv st -> match f a st, f' a st with | Success (v, st), Success (v', st') => R v v' /\ st = st' /\ Hinv st | Error err, Error err' => err = err' | Success _, Error _ | Error _, Success _ => False end) (l1 : list A) (l2 : list A) (Hl : l1 = l2) : forall st, Hinv st -> match mapM f l1 st, mapM f' l2 st with | Success (v, st), Success (v', st') => Forall2 R v v' /\ st = st' /\ Hinv st | Error err, Error err' => err = err' | Success _, Error _ | Error _, Success _ => False end.
Proof.
subst l2; induction l1 as [|x xs IHxs]; intros st Hst; cbn [mapM]; cbv [ret]; eauto.
cbv [Symbolic.bind Crypto.Util.Option.bind ErrorT.bind].
specialize (Hf x st Hst).
break_match_hyps; try tauto.
cbn [fst snd].
destruct_head'_and; subst.
let s := match goal with |- context[mapM f xs ?s] => s end in specialize (IHxs s ltac:(assumption)).
break_match_hyps; try tauto.
repeat first [ progress cbn [fst snd] | progress destruct_head'_and | progress subst | constructor | assumption ].
Qed.
(* TODO: Move to SymbolicProofs? *)
Local Lemma mapM_Proper {A B B'} R (f : A -> M B) (f' : A -> M B') (Hf : forall a st, match f a st, f' a st with | Success (v, st), Success (v', st') => R v v' /\ st = st' | Error err, Error err' => err = err' | Success _, Error _ | Error _, Success _ => False end) (l1 : list A) (l2 : list A) (Hl : l1 = l2) : forall st, match mapM f l1 st, mapM f' l2 st with | Success (v, st), Success (v', st') => Forall2 R v v' /\ st = st' | Error err, Error err' => err = err' | Success _, Error _ | Error _, Success _ => False end.
Proof.
intro st.
unshelve epose proof ((fun H => @mapM_Proper_inv A B B' R (fun _ => True) f f' (fun a st _ => H a st (Hf a st)) l1 l2 Hl st I) _) as H'.
all: intros; break_match; intuition.
Qed.
(* TODO: Move to SymbolicProofs? *)
Local Lemma mapM__Proper_inv {A B B'} (Hinv : _ -> Prop) (f : A -> M B) (f' : A -> M B') (Hf : forall a st, Hinv st -> match f a st, f' a st with | Success (_, st), Success (_, st') => st = st' /\ Hinv st | Error err, Error err' => err = err' | Success _, Error _ | Error _, Success _ => False end) (l1 : list A) (l2 : list A) (Hl : l1 = l2) : forall st, Hinv st -> mapM_ f l1 st = mapM_ f' l2 st.
Proof.
intros st Hst.
unshelve epose proof ((fun H => @mapM_Proper_inv A B B' (fun _ _ => True) Hinv f f' (fun a st pf => H a st (Hf a st pf)) l1 l2 Hl st Hst) _).
{
intros; break_match; intuition.
}
{
cbv [mapM_ Symbolic.bind ErrorT.bind].
break_match_hyps; destruct_head'_and; subst; cbn [fst snd] in *; intuition.
}
Qed.
(* TODO: Move to SymbolicProofs? *)
Local Lemma mapM__Proper {A B B'} (f : A -> M B) (f' : A -> M B') (Hf : forall a st, match f a st, f' a st with | Success (_, st), Success (_, st') => st = st' | Error err, Error err' => err = err' | Success _, Error _ | Error _, Success _ => False end) (l1 : list A) (l2 : list A) (Hl : l1 = l2) : forall st, mapM_ f l1 st = mapM_ f' l2 st.
Proof.
intro st.
unshelve epose proof ((fun H => @mapM__Proper_inv A B B' (fun _ => True) f f' (fun a st _ => H a st (Hf a st)) l1 l2 Hl st I) _) as H'.
all: intros; break_match; intuition.
Qed.
Lemma merge_fresh_symbol_eq_G {descr:description} G d v (res := merge_fresh_symbol_G v (G, d)) : merge_fresh_symbol d = (fst res, snd (snd res)).
Proof.
subst res; cbv [merge_fresh_symbol_G]; break_innermost_match; reflexivity.
Qed.
Lemma merge_fresh_symbol_G_ok {descr:description} G d v G' d' idx (Hd : gensym_dag_ok G d) (H : merge_fresh_symbol_G v (G, d) = (idx, (G', d'))) : eval_idx_Z G' d' idx (Z.land v (Z.ones (Z.of_N 64))) /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
cbv [merge_fresh_symbol_G merge_fresh_symbol merge_node gensym_dag_ok dag_ok] in *.
destruct_head'_and.
assert (forall e n, eval G d e n -> eval G' d' e n).
all: break_innermost_match_hyps; inversion_prod; subst.
1: inversion_prod; subst; intros e n H; induction H; econstructor.
all: repeat first [ progress inversion_prod | progress inversion_option | progress subst | progress cbn [List.map interp_op fst snd] in * | reflexivity | exact _ | progress intros | progress split_and | progress destruct_head'_and | progress cbv [eval_idx_Z gensym_dag_ok gensym_ok ctx_set dag_ok node_ok] in * | rewrite dag.fst_merge_node_gensym by assumption | rewrite @dag.lookup_merge_node in * by assumption | rewrite @dag.fst_merge_node_gensym in * by assumption | rewrite dag.size_merge_node_gensym by assumption | rewrite dag.lookup_size_error in * by first [ assumption | lia ] | rewrite @dag.reverse_lookup_gensym in * by assumption | rewrite Bool.andb_true_iff in * | rewrite Bool.andb_false_iff in * | progress reflect_hyps | match goal with | [ H : ?x = Some _ |- context[?x] ] => rewrite H | [ |- _ /\ _ ] => split | [ H : Forall2 _ ?xs _ |- Forall2 _ ?xs _ ] => eapply Forall2_weaken; [ | eassumption ]; intuition tauto | [ H : interp_op _ ?op ?args = Some ?n |- interp_op _ ?op ?args = Some ?n ] => revert H; destruct op; cbn [interp_op]; break_innermost_match end | progress destruct_head'_or | progress break_innermost_match | progress break_innermost_match_hyps | solve [ eauto ] | specialize_under_binders_by eassumption; lia | match goal with | [ |- eval _ _ (ExprRef (dag.size _)) _ ] => econstructor | [ |- exists v, eval _ _ (ExprRef (dag.size _)) v ] => eexists; econstructor | [ H : forall i r, dag.lookup ?d i = Some r -> exists v, eval _ ?d (ExprRef i) v, H' : dag.lookup ?d ?idx = Some _ |- exists v', eval _ (snd (dag.merge_node _ ?d)) (ExprRef ?idx) v' ] => let v := fresh "v" in specialize (H _ _ H'); destruct H as [v H]; exists v end ].
Qed.
Local Lemma land_ones_eq_of_bounded v n (H : (0 <= v < 2 ^ (Z.of_N n))%Z) : Z.land v (Z.ones (Z.of_N n)) = v.
Proof.
rewrite Z.land_ones by lia.
rewrite Z.mod_small by lia.
reflexivity.
Qed.
Lemma merge_fresh_symbol_G_ok_bounded {descr:description} G d v G' d' idx (Hd : gensym_dag_ok G d) (H : merge_fresh_symbol_G v (G, d) = (idx, (G', d'))) (Hv : (0 <= v < 2^64)%Z) : eval_idx_Z G' d' idx v /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
replace v with (Z.land v (Z.ones (Z.of_N 64))); [ now apply merge_fresh_symbol_G_ok | rewrite land_ones_eq_of_bounded by assumption ].
reflexivity.
Qed.
Lemma build_inputarray_eq_G {descr:description} G d vals (len := List.length vals) : build_inputarray len d = (fst (build_inputarray_G vals (G, d)), snd (snd (build_inputarray_G vals (G, d)))).
Proof.
cbv [build_inputarray build_inputarray_G].
generalize (seq_length len 0); generalize (seq 0 len); subst len; intro l; revert l.
induction vals, l; cbn [List.length List.foldmap fst snd]; try congruence; try reflexivity.
intro H; inversion H; clear H; specialize (IHvals _ ltac:(eassumption)).
rewrite !IHvals; clear IHvals.
clear dependent l.
edestruct List.foldmap; destruct_head'_prod; cbn [fst snd].
repeat f_equal.
all: erewrite !@merge_fresh_symbol_eq_G; cbn [fst snd]; reflexivity.
Qed.
Lemma build_inputarray_G_ok {descr:description} G d vals G' d' ia (Hd : gensym_dag_ok G d) (H : build_inputarray_G vals (G, d) = (ia, (G', d'))) (Hbounds : Forall (fun v => (0 <= v < 2^64)%Z) vals) : Forall2 (eval_idx_Z G' d') ia vals /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
cbv [build_inputarray_G] in *.
revert ia G d G' d' Hd H.
induction vals as [|v vals IHvals], ia as [|i ia]; cbn [List.foldmap]; intros; inversion_prod; subst; eauto; try congruence.
{
set (res := List.foldmap _ _ _) in *.
destruct res eqn:Hres; subst res; destruct_head'_prod; cbn [fst snd] in *.
inversion Hbounds; subst.
specialize (IHvals ltac:(assumption) _ _ _ _ _ ltac:(eassumption) ltac:(eassumption)).
repeat first [ progress subst | progress destruct_head'_and | match goal with | [ H : ?x :: ?xs = ?y :: ?ys |- _ ] => assert (x = y /\ xs = ys) by (now inversion H; split); clear H end ].
let lem := match goal with |- context[merge_fresh_symbol_G ?v (?G, ?d)] => constr:(merge_fresh_symbol_G_ok_bounded G d v) end in pose proof (lem _ _ _ ltac:(assumption) ltac:(repeat rewrite <- surjective_pairing; reflexivity) ltac:(lia)).
repeat first [ progress subst | progress destruct_head'_and | assumption | solve [ eauto ] | match goal with | [ |- _ /\ _ ] => split | [ |- Forall2 _ (_ :: _) (_ :: _) ] => constructor | [ H : Forall2 _ ?l1 ?l2 |- Forall2 _ ?l1 ?l2 ] => eapply Forall2_weaken; [ clear H | exact H ] | [ |- forall a b, eval_idx_Z _ _ a b -> eval_idx_Z _ _ a b ] => apply lift_eval_idx_Z_impl end ].
}
Qed.
Lemma build_inputarray_ok {descr:description} G d len idxs args d' (d_ok : gensym_dag_ok G d) (H : build_inputarray len d = (idxs, d')) (Hargs : List.length args = len) (Hbounds : Forall (fun v => (0 <= v < 2^64)%Z) args) : exists G', Forall2 (eval_idx_Z G' d') idxs args /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
subst len; erewrite build_inputarray_eq_G in H; inversion_prod.
eexists; eapply build_inputarray_G_ok; try eassumption.
repeat first [ eassumption | apply path_prod | reflexivity ].
Qed.
Lemma dag_gensym_n_eq_G {descr:description} G d vals (len := List.length vals) : dag_gensym_n len d = (fst (dag_gensym_n_G vals (G, d)), snd (snd (dag_gensym_n_G vals (G, d)))).
Proof.
subst len.
revert G d; induction vals as [|v vals IHvals]; cbn [dag_gensym_n dag_gensym_n_G fst snd List.length]; [ reflexivity | ]; intros.
cbv [dag.bind dag.ret]; eta_expand; cbn [fst snd].
erewrite !@merge_fresh_symbol_eq_G, IHvals; cbn [fst snd]; eta_expand; reflexivity.
Qed.
Lemma dag_gensym_n_G_ok {descr:description} G d vals G' d' ia (Hd : gensym_dag_ok G d) (H : dag_gensym_n_G vals (G, d) = (ia, (G', d'))) (Hbounds : Forall (fun v => (0 <= v < 2^64)%Z) vals) : Forall2 (eval_idx_Z G' d') ia vals /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
revert ia G d G' d' Hd H.
induction vals as [|v vals IHvals], ia as [|i ia]; cbn [dag_gensym_n_G]; intros; try solve [ inversion_prod; subst; eta_expand; cbn [fst snd] in *; eauto; try congruence ].
{
break_innermost_match_hyps.
inversion Hbounds; subst; clear Hbounds.
destruct_head'_prod.
specialize (fun H => IHvals ltac:(assumption) _ _ _ _ _ H ltac:(eassumption)).
match goal with H : pair _ _ = pair _ _ |- _ => inversion H; clear H end; subst.
let lem := match goal with H : context[merge_fresh_symbol_G ?v (?G, ?d)] |- _ => constr:(merge_fresh_symbol_G_ok_bounded G d v) end in pose proof (lem _ _ _ ltac:(assumption) ltac:(eassumption) ltac:(lia)).
destruct_head'_and; specialize_by_assumption.
repeat first [ progress subst | progress destruct_head'_and | assumption | solve [ eauto ] | match goal with | [ |- _ /\ _ ] => split | [ |- Forall2 _ (_ :: _) (_ :: _) ] => constructor | [ H : Forall2 _ ?l1 ?l2 |- Forall2 _ ?l1 ?l2 ] => eapply Forall2_weaken; [ clear H | exact H ] | [ |- forall a b, eval_idx_Z _ _ a b -> eval_idx_Z _ _ a b ] => apply lift_eval_idx_Z_impl | [ |- eval_idx_Z _ _ _ _ ] => eapply lift_eval_idx_Z_impl; now eauto end ].
}
Qed.
Lemma dag_gensym_n_ok {descr:description} G d len idxs args d' (d_ok : gensym_dag_ok G d) (H : dag_gensym_n len d = (idxs, d')) (Hargs : List.length args = len) (Hbounds : Forall (fun v => (0 <= v < 2^64)%Z) args) : exists G', Forall2 (eval_idx_Z G' d') idxs args /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
subst len; erewrite dag_gensym_n_eq_G in H; inversion_prod.
eexists; eapply dag_gensym_n_G_ok; try eassumption.
repeat first [ eassumption | apply path_prod | reflexivity ].
Qed.
Definition type_spec_of_runtime {A} (ls : list (A + list A)) : list (option nat) := List.map (fun v => match v with inl _ => None | inr ls => Some (List.length ls) end) ls.
Lemma type_spec_of_runtime_val_or_list_val_matches_spec vals types : types = type_spec_of_runtime vals <-> Forall2 val_or_list_val_matches_spec vals types.
Proof.
split.
{
intro; subst; induction vals; cbn; constructor; break_innermost_match; cbn; eauto.
}
{
intro H; induction H; repeat (subst || cbn in * || destruct_head' option || break_innermost_match || intuition).
}
Qed.
Lemma build_inputs_eq_G {descr:description} G d vals (types := type_spec_of_runtime vals) : build_inputs types d = (fst (build_inputs_G vals (G, d)), snd (snd (build_inputs_G vals (G, d)))).
Proof.
revert G d; subst types; induction vals as [|v vals IHvals]; [ reflexivity | ].
cbn [build_inputs type_spec_of_runtime List.map build_inputs_G]; fold (type_spec_of_runtime vals); intros.
cbv [dag.bind dag.ret]; break_innermost_match; destruct_head'_prod; cbn [fst snd].
all: repeat first [ progress cbn [fst snd] in * | progress subst | reflexivity | match goal with | [ H : pair _ _ = pair _ _ |- _ ] => inversion H; clear H | [ H : merge_fresh_symbol _ = _, H' : merge_fresh_symbol_G _ _ = _ |- _ ] => erewrite merge_fresh_symbol_eq_G, H' in H | [ H : build_inputarray _ _ = _, H' : build_inputarray_G _ _ = _ |- _ ] => erewrite build_inputarray_eq_G, H' in H | [ H : build_inputs _ _ = _, H' : build_inputs_G _ _ = _ |- _ ] => erewrite IHvals, H' in H end ].
Qed.
Lemma build_inputs_G_ok {descr:description} G d vals G' d' inputs (Hd : gensym_dag_ok G d) (H : build_inputs_G vals (G, d) = (inputs, (G', d'))) (Hbounds : Forall (fun v => match v with | inl v => (0 <= v < 2^64)%Z | inr vs => Forall (fun v => (0 <= v < 2^64)%Z) vs end) vals) : Forall2 (eval_idx_or_list_idx G' d') inputs vals /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
revert inputs G d G' d' Hd H.
induction vals as [|v vals IHvals], inputs as [|i inputs]; cbn [build_inputs_G]; intros; inversion_prod; subst; eauto; try (break_innermost_match; cbn [fst snd] in *; congruence).
{
break_innermost_match; destruct_head'_prod; cbn [fst snd] in *.
all: repeat first [ progress subst | progress destruct_head'_and | solve [ eauto ] | match goal with | [ H : ?x :: ?xs = ?y :: ?ys |- _ ] => assert (x = y /\ xs = ys) by (now inversion H; split); clear H | [ H : merge_fresh_symbol_G _ _ = _ |- _ ] => apply merge_fresh_symbol_G_ok_bounded in H; [ | (assumption + lia) .. ] | [ H : build_inputarray_G _ _ = _ |- _ ] => apply build_inputarray_G_ok in H; [ | assumption .. ] | [ H : build_inputs_G _ _ = _ |- _ ] => apply IHvals in H; [ | assumption .. ] | [ H : Forall _ (_ :: _) |- _ ] => inversion H; clear H | [ |- _ /\ _ ] => split | [ |- Forall2 _ (_ :: _) (_ :: _) ] => constructor | [ H : eval_idx_Z _ _ ?e ?n |- eval_idx_Z _ _ ?e ?n ] => revert H; apply lift_eval_idx_Z_impl; assumption | [ H : Forall2 (eval_idx_Z _ _) ?e ?n |- Forall2 (eval_idx_Z _ _) ?e ?n ] => revert H; apply Forall2_weaken, lift_eval_idx_Z_impl; assumption end | progress cbv [eval_idx_or_list_idx] ].
}
Qed.
Lemma build_inputs_ok {descr:description} G d types inputs args d' (d_ok : gensym_dag_ok G d) (H : build_inputs types d = (inputs, d')) (Hbounds : Forall (fun v => match v with | inl v => (0 <= v < 2^64)%Z | inr vs => Forall (fun v => (0 <= v < 2^64)%Z) vs end) args) (Hargs : Forall2 val_or_list_val_matches_spec args types) : exists G', Forall2 (eval_idx_or_list_idx G' d') inputs args /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
apply type_spec_of_runtime_val_or_list_val_matches_spec in Hargs; subst types.
erewrite build_inputs_eq_G in H; inversion_prod.
eexists; eapply build_inputs_G_ok; try eassumption.
repeat first [ eassumption | apply path_prod | reflexivity ].
Qed.
Lemma lift_dag_eq_G {A} G v_G v s s' res (Hv : v s.(dag_state) = (fst (v_G (G, s.(dag_state))), snd (snd (v_G (G, s.(dag_state)))))) (H : lift_dag v s = Success (res, s')) : exists G', @lift_dag_G A v_G (G, s) = Some (res, (G', s')).
Proof.
revert H; cbv [lift_dag lift_dag_G] in *; break_innermost_match.
intros; inversion_ErrorT; inversion_option; inversion_prod; subst.
set (vs := v s) in *; clearbody vs; clear v; destruct vs; cbn [fst snd] in *; subst.
eexists; reflexivity.
Qed.
Lemma SetRegFresh_eq_G {opts : symbolic_options_computed_opt} {descr:description} G r s v idx s' (H : SetRegFresh r s = Success (idx, s')) : exists G', SetRegFresh_G r v (G, s) = Some (idx, (G', s')).
Proof.
revert H; cbv [SetRegFresh SetRegFresh_G G.bind Symbolic.bind ErrorT.bind Crypto.Util.Option.bind G.lift Symbolic.ret G.ret].
repeat first [ progress inversion_ErrorT | progress inversion_option | progress subst | progress destruct_head'_ex | progress cbn [fst snd] in * | progress inversion_prod | eexists; reflexivity | discriminate | match goal with | [ H : lift_dag _ _ = Success _ |- _ ] => eapply lift_dag_eq_G in H; [ | clear H ] | [ H : ?x = _, H' : ?x = _ |- _ ] => rewrite H in H' | [ H : lift_dag_G ?x ?y = _, H' : lift_dag_G ?x' ?y' = _ |- _ ] => unify x x'; unify y y'; rewrite H in H' end | break_innermost_match_step | progress intros | apply merge_fresh_symbol_eq_G | progress destruct_head'_prod ].
Qed.
Lemma build_merge_base_addresses_eq_G {opts : symbolic_options_computed_opt} {descr:description} {dereference_scalar:bool} G items reg_available runtime_reg s res s' (Hreg : Nat.min (List.length items) (List.length reg_available) <= List.length runtime_reg) (H : build_merge_base_addresses (dereference_scalar:=dereference_scalar) items reg_available s = Success (res, s')) : exists G', build_merge_base_addresses_G (dereference_scalar:=dereference_scalar) items reg_available runtime_reg (G, s) = Some (res, (G', s')).
Proof.
move H at top; move items at top; move dereference_scalar at top; move opts at top; repeat match goal with H : _ |- _ => revert H end.
intros until items.
induction items as [|? ? IH]; cbn [build_merge_base_addresses build_merge_base_addresses_G].
all: cbv [G.ret Symbolic.ret Symbolic.bind ErrorT.bind G.bind Crypto.Util.Option.bind G.lift]; intros.
all: repeat first [ progress destruct_head'_ex | match goal with | [ H : SetRegFresh _ _ = Success _ |- _ ] => eapply SetRegFresh_eq_G in H | [ H : SetRegFresh_G ?r ?v ?s = _, H' : SetRegFresh_G ?r' ?v' ?s' = _ |- _ ] => unify r r'; unify v v'; unify s s'; rewrite H in H' end | progress subst | progress inversion_ErrorT | progress inversion_option | progress inversion_prod | eexists; reflexivity | progress cbn [List.length fst snd] in * | discriminate | break_innermost_match_step | break_innermost_match_hyps_step | progress specialize_by_assumption | progress destruct_head'_ex | rewrite <- Nat.succ_min_distr in * | exfalso; (assumption + lia) | match goal with | [ H : Forall2 _ (_ :: _) _ |- _ ] => inversion H; clear H | [ H : Forall2 _ [] _ |- _ ] => inversion H; clear H | [ H : S ?x <= S ?y |- _ ] => assert (x <= y) by lia; clear H | [ H : build_merge_base_addresses _ _ _ = _ |- _ ] => specialize (IH _ _ _ _ _ H) | [ IH : forall G rr, _ -> exists G', build_merge_base_addresses_G ?it ?ra rr (G, ?s) = _, H' : build_merge_base_addresses_G ?it ?ra ?rrv (?Gv, ?s) = _ |- _ ] => specialize (IH Gv rrv) | [ H : ?x = _, H' : ?x = _ |- _ ] => rewrite H in H' | [ H : context[match mapM ?f ?l ?s with _ => _ end] |- context[match mapM ?f ?l ?s with _ => _ end] ] => destruct (mapM f l s) eqn:? end | progress destruct_head'_prod ].
Qed.
Lemma compute_stack_base_eq_G {opts : symbolic_options_computed_opt} {descr:description} G rsp_val stack_size s res s' (H : compute_stack_base stack_size s = Success (res, s')) : exists G', compute_stack_base_G rsp_val stack_size (G, s) = Some (res, (G', s')).
Proof.
revert H; cbv [compute_stack_base_G compute_stack_base G.bind G.ret Crypto.Util.Option.bind Symbolic.bind ErrorT.bind G.lift Symbolic.ret].
repeat first [ progress intros | progress cbn [fst snd] in * | progress subst | progress inversion_ErrorT | progress inversion_option | progress destruct_head'_prod | progress subst_prod | progress destruct_head'_ex | eexists; reflexivity | match goal with | [ H : SetRegFresh _ _ = Success _ |- _ ] => eapply SetRegFresh_eq_G in H | [ H : SetRegFresh_G ?r ?v ?s = _, H' : SetRegFresh_G ?r' ?v' ?s' = _ |- _ ] => unify r r'; unify v v'; unify s s'; rewrite H in H' | [ H : ?x = Success _ |- context[?x] ] => rewrite H end | break_innermost_match_hyps_step | break_innermost_match_step ].
Qed.
Lemma build_merge_stack_placeholders_eq_G {opts : symbolic_options_computed_opt} {descr:description} G rsp_val stack_vals s res s' (H : build_merge_stack_placeholders (List.length stack_vals) s = Success (res, s')) : exists G', build_merge_stack_placeholders_G rsp_val stack_vals (G, s) = Some (res, (G', s')).
Proof.
revert H; cbv [build_merge_stack_placeholders_G build_merge_stack_placeholders G.bind G.ret Crypto.Util.Option.bind Symbolic.bind ErrorT.bind G.lift Symbolic.ret].
repeat first [ progress intros | progress cbn [fst snd] in * | progress subst | progress inversion_ErrorT | progress inversion_option | progress destruct_head'_prod | progress subst_prod | progress destruct_head'_ex | eexists; reflexivity | match goal with | [ H : compute_stack_base _ _ = Success _ |- _ ] => eapply compute_stack_base_eq_G in H | [ H : compute_stack_base_G ?r ?v ?s = _, H' : compute_stack_base_G ?r' ?v' ?s' = _ |- _ ] => unify r r'; unify v v'; unify s s'; rewrite H in H' | [ H : lift_dag _ _ = Success _ |- _ ] => eapply lift_dag_eq_G in H; [ | clear H ] | [ H : lift_dag_G ?x ?y = _, H' : lift_dag_G ?x' ?y' = _ |- _ ] => unify x x'; unify y y'; rewrite H in H' | [ H : ?x = Success _ |- context[?x] ] => rewrite H end | apply build_inputarray_eq_G | break_innermost_match_hyps_step | break_innermost_match_step ].
Qed.
Lemma SetReg_ok {opts : symbolic_options_computed_opt} {descr:description} G s s' reg idx rn lo sz v (Hreg : index_and_shift_and_bitcount_of_reg reg = (rn, lo, sz)) (H64 : sz = 64%N) (H : SetReg reg idx s = Success (tt, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hidx : eval_idx_Z G d idx v) : ((exists idx', set_reg r rn idx' = r' /\ eval_idx_Z G d' idx' (Z.land v (Z.ones 64))) /\ f = f' /\ m = m') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
cbv [SetReg Symbolic.bind ErrorT.bind Crypto.Util.Option.bind GetReg SetReg64] in *.
break_match_hyps.
all: repeat first [ progress inversion_option | progress cbn [fst snd dag_state symbolic_reg_state symbolic_flag_state symbolic_mem_state] in * | progress subst | progress inversion_prod | progress destruct_head'_prod | progress destruct_head'_and | progress inversion_ErrorT | progress reflect_hyps | tauto | progress cbv [update_reg_with] | match goal with | [ H := _ |- _ ] => subst H end ].
(* dealing with App *)
cbv [Symbolic.App Merge] in *.
(* need to do this early to deal with conversion slowness *)
repeat match goal with | [ H : context[simplify ?s ?n] |- _ ] => unshelve epose proof (@eval_simplify _ _ s n _ _ _); shelve_unifiable; [ solve [ repeat first [ eassumption | exactly_once econstructor ] ] .. | ]; generalize dependent (simplify s n); intros | [ H : context[merge ?e ?d] |- _ ] => pose proof (@eval_merge _ _ e _ d ltac:(eassumption) ltac:(eassumption)); generalize dependent (merge e d); intros end.
repeat first [ progress inversion_ErrorT | progress inversion_prod | progress subst | progress destruct_head'_and | progress cbn [fst snd dag_state symbolic_reg_state symbolic_flag_state symbolic_mem_state] in * | progress cbv [update_dag_with eval_idx_Z] in * | solve [ eauto ] | apply conj | eapply ex_intro ].
Qed.
Lemma SetReg_ok_bounded {opts : symbolic_options_computed_opt} {descr:description} G s s' reg idx rn lo sz v (Hreg : index_and_shift_and_bitcount_of_reg reg = (rn, lo, sz)) (H64 : sz = 64%N) (H : SetReg reg idx s = Success (tt, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hidx : eval_idx_Z G d idx v) (Hv : (0 <= v < 2^64)%Z) : ((exists idx', set_reg r rn idx' = r' /\ eval_idx_Z G d' idx' v) /\ f = f' /\ m = m') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
replace v with (Z.land v (Z.ones (Z.of_N 64))); [ eapply SetReg_ok; eassumption | rewrite land_ones_eq_of_bounded by assumption ].
reflexivity.
Qed.
Lemma SetRegFresh_G_ok {opts : symbolic_options_computed_opt} {descr:description} G G' s s' reg idx rn lo sz v (Hreg : index_and_shift_and_bitcount_of_reg reg = (rn, lo, sz)) (H64 : sz = 64%N) (H : SetRegFresh_G reg v (G, s) = Some (idx, (G', s'))) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) : (eval_idx_Z G' d' idx (Z.land v (Z.ones 64)) /\ (exists idx', set_reg r rn idx' = r' /\ eval_idx_Z G' d' idx' (Z.land v (Z.ones 64))) /\ f = f' /\ m = m') /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
cbv [SetRegFresh_G lift_dag_G G.lift G.bind Crypto.Util.Option.bind G.ret] in H.
break_innermost_match_hyps; inversion_option; [].
repeat first [ progress inversion_option | progress subst | progress destruct_head'_and | progress destruct_head'_ex | progress destruct_head'_unit | progress subst_prod | progress cbv [update_dag_with] in * | progress cbn [dag_state symbolic_reg_state symbolic_flag_state symbolic_mem_state] in * | rewrite Z.land_same_r in * | solve [ cbv [eval_idx_Z] in *; eauto ] | match goal with | [ H := _ |- _ ] => subst H | [ H : merge_fresh_symbol_G _ _ = _ |- _ ] => apply merge_fresh_symbol_G_ok in H; [ | assumption .. ] | [ H : SetReg _ _ _ = _ |- _ ] => eapply SetReg_ok in H; [ | first [ eassumption | reflexivity ] .. ] end | apply conj | eapply ex_intro ].
Qed.
Lemma SetRegFresh_G_ok_bounded {opts : symbolic_options_computed_opt} {descr:description} G G' s s' reg idx rn lo sz v (Hreg : index_and_shift_and_bitcount_of_reg reg = (rn, lo, sz)) (H64 : sz = 64%N) (H : SetRegFresh_G reg v (G, s) = Some (idx, (G', s'))) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hv : (0 <= v < 2^64)%Z) : (eval_idx_Z G' d' idx v /\ (exists idx', set_reg r rn idx' = r' /\ eval_idx_Z G' d' idx' v) /\ f = f' /\ m = m') /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
replace v with (Z.land v (Z.ones (Z.of_N 64))); [ eapply SetRegFresh_G_ok; eassumption | rewrite land_ones_eq_of_bounded by assumption ].
reflexivity.
Qed.
Lemma GetReg_ok {opts : symbolic_options_computed_opt} {descr:description} G s s' reg idx rn lo sz v (Hreg : index_and_shift_and_bitcount_of_reg reg = (rn, lo, sz)) (H64 : sz = 64%N) (H : GetReg reg s = Success (idx, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hr : forall idx', get_reg r rn = Some idx' -> eval_idx_Z G d idx' v) : ((exists idx', get_reg r rn = Some idx' /\ eval_idx_Z G d idx' v) /\ eval_idx_Z G d' idx (Z.land v (Z.ones 64)) /\ r = r' /\ f = f' /\ m = m') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
cbv [GetReg GetReg64 some_or Symbolic.bind ErrorT.bind Symbolic.App Merge] in *.
subst sz.
assert (lo = 0%N) by ( clear -Hreg; inversion_prod; subst; destruct reg; vm_compute in *; try reflexivity; discriminate ).
subst lo.
rewrite Hreg in *.
break_innermost_match_hyps; cbn [fst snd] in *; inversion_ErrorT.
specialize (Hr _ ltac:(eassumption)).
(* need to do this early to deal with conversion slowness *)
repeat match goal with | [ H : context[simplify ?s ?n] |- _ ] => unshelve epose proof (@eval_simplify _ _ s n _ _ _); shelve_unifiable; [ solve [ repeat first [ eassumption | exactly_once econstructor ] ] .. | ]; generalize dependent (simplify s n); intros | [ H : context[merge ?e ?d] |- _ ] => pose proof (@eval_merge _ _ e _ d ltac:(eassumption) ltac:(eassumption)); generalize dependent (merge e d); intros end.
all: repeat first [ progress inversion_ErrorT | progress inversion_prod | progress subst | progress destruct_head'_and | progress destruct_head'_prod | progress cbv [update_dag_with eval_idx_Z] in * | progress cbn [fst snd dag_state symbolic_reg_state symbolic_flag_state symbolic_mem_state] in * | solve [ eauto ] | match goal with | [ H := _ |- _ ] => subst H end | apply conj | eapply ex_intro ].
Qed.
Lemma GetReg_ok_bounded {opts : symbolic_options_computed_opt} {descr:description} G s s' reg idx rn lo sz v (Hreg : index_and_shift_and_bitcount_of_reg reg = (rn, lo, sz)) (H64 : sz = 64%N) (H : GetReg reg s = Success (idx, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hr : forall idx', get_reg r rn = Some idx' -> eval_idx_Z G d idx' v) (Hv : (0 <= v < 2^64)%Z) : ((exists idx', get_reg r rn = Some idx' /\ eval_idx_Z G d idx' v) /\ eval_idx_Z G d' idx v /\ r = r' /\ f = f' /\ m = m') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
replace v with (Z.land v (Z.ones (Z.of_N 64))) at 1; [ eapply GetReg_ok; eassumption | rewrite land_ones_eq_of_bounded by assumption ].
reflexivity.
Qed.
Local Lemma mapM_ok_via_upd G {A B} (f : A -> M B) ls s v s' (H : mapM f ls s = Success (v, s')) upd_mem upd_reg upd_flag (R_static : _ -> Prop) (R_inv : _ -> Prop) (R : _ -> _ -> _ -> Prop) (d := s.(dag_state)) (d' := s'.(dag_state)) (Hd : gensym_dag_ok G d) (Hf : forall s' s'' x v, let d' := s'.(dag_state) in let d'' := s''.(dag_state) in f x s' = Success (v, s'') -> gensym_dag_ok G s' -> R_inv s' -> R_static x -> (forall e n, eval G d e n -> eval G d' e n) -> upd_mem s'.(symbolic_mem_state) (x, v) = s''.(symbolic_mem_state) /\ upd_reg s'.(symbolic_reg_state) (x, v) = s''.(symbolic_reg_state) /\ upd_flag s'.(symbolic_flag_state) (x, v) = s''.(symbolic_flag_state) /\ (forall e n, eval G d' e n -> eval G d'' e n) /\ R s'' x v /\ (forall x v, R s' x v -> R s'' x v) /\ gensym_dag_ok G s'' /\ R_inv s'') (Hinv : R_inv s) (Hstatic : Forall R_static ls) : ((Forall2 (R s') ls v /\ fold_left upd_mem (List.combine ls v) s.(symbolic_mem_state) = s'.(symbolic_mem_state) /\ fold_left upd_reg (List.combine ls v) s.(symbolic_reg_state) = s'.(symbolic_reg_state) /\ fold_left upd_flag (List.combine ls v) s.(symbolic_flag_state) = s'.(symbolic_flag_state) /\ forall x v, R s x v -> R s' x v) /\ R_inv s') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
cbv beta iota zeta in *.
subst d d'.
revert v s' H.
remember s as s0 eqn:Hs in |- *.
assert (Hs0 : forall e n, eval G s e n -> eval G s0 e n) by now subst s0.
assert (Hd0 : gensym_dag_ok G s0) by now subst s0.
assert (Hinv0 : R_inv s0) by now subst s0.
clear Hs; revert s0 Hs0 Hd0 Hinv0.
induction ls as [|x xs IHxs]; cbn [mapM]; cbv [ret Symbolic.bind ErrorT.bind].
{
intros; inversion_ErrorT; inversion_prod; subst; cbn [fold_left]; eauto 10.
}
{
repeat first [ progress intros | progress inversion_ErrorT | progress inversion_prod | progress subst | progress break_innermost_match_hyps | progress destruct_head'_prod | progress cbn [fst snd fold_left] in * | match goal with | [ H : Forall _ (_ :: _) |- _ ] => inversion H; clear H end ].
specialize (Hf _ _ _ _ ltac:(eassumption)); specialize_by_assumption.
destruct_head'_and; subst.
unshelve epose proof (IHxs _ _ _ _ _ _ ltac:(eassumption)) as IHxs'; clear IHxs; eauto; [].
cbn [List.combine fold_left].
destruct_head'_and; repeat first [ solve [ eauto ] | apply conj ].
all: destruct_head symbolic_state; subst; reflexivity.
}
Qed.
(* TODO: this is Symbolic.get_reg; move to SymbolicProofs? *)
Lemma get_reg_set_reg_full s rn rn' v : get_reg (set_reg s rn v) rn' = if ((rn <? ((fun n (_ : Tuple.tuple _ n) => n) _ s)) && (rn =? rn'))%nat%bool then Some v else get_reg s rn'.
Proof.
cbv [get_reg set_reg].
break_innermost_match; split_andb; reflect_hyps; subst.
all: rewrite <- !Tuple.nth_default_to_list.
all: rewrite ?@Tuple.length_to_list in *.
all: unshelve erewrite Tuple.from_list_default_eq, Tuple.to_list_from_list, set_nth_nth_default_full; rewrite ?length_set_nth, ?Tuple.length_to_list; try easy.
all: break_innermost_match; try lia; try reflexivity.
now rewrite nth_default_out_of_bounds by now rewrite Tuple.length_to_list; lia.
Qed.
(* TODO: this is Symbolic.get_reg; move to SymbolicProofs? *)
Local Lemma get_reg_set_reg_same s rn v (H : (rn < (fun n (_ : Tuple.tuple _ n) => n) _ s)%nat) : get_reg (set_reg s rn v) rn = Some v.
Proof.
rewrite get_reg_set_reg_full; break_innermost_match; reflect_hyps; cbv beta in *; try reflexivity; lia.
Qed.
Lemma compute_array_address_ok {opts : symbolic_options_computed_opt} {descr:description} G s s' base i idx base_val (H : compute_array_address base i s = Success (idx, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hidx : eval_idx_Z G d base base_val) : (eval_idx_Z G d' idx (Z.land (base_val + 8 * Z.of_nat i) (Z.ones 64)) /\ r = r' /\ f = f' /\ m = m') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
cbv [compute_array_address Symbolic.App Merge Symbolic.bind] in H.
subst d d'.
repeat first [ progress inversion_ErrorT | progress destruct_head'_prod | progress inversion_option | progress cbn [fst snd] in * | progress destruct_head'_and | progress cbv [update_dag_with] in * | match goal with | [ H : ErrorT.bind ?x _ = _ |- _ ] => destruct x eqn:?; unfold ErrorT.bind at 1 in H | [ H : ?v = Success _ |- _ ] => match v with | context[match ?x with Some _ => _ | _ => _ end] => destruct x eqn:? end end ].
(* need to do this early to deal with conversion slowness *)
repeat first [ match goal with | [ H : context[simplify ?s ?n] |- _ ] => unshelve epose proof (@eval_simplify _ _ s n _ _ _); shelve_unifiable; [ solve [ repeat first [ eassumption | solve [ eauto ] | exactly_once econstructor ] ] .. | ]; generalize dependent (simplify s n); intros | [ H : context[merge ?e ?d] |- _ ] => pose proof (@eval_merge _ _ e _ d ltac:(eassumption) ltac:(eassumption)); generalize dependent (merge e d); intros | [ H : (?x, ?y) = (?z, ?w) |- _ ] => is_var x; is_var z; is_var w; inversion H; clear H end | progress destruct_head'_prod | progress destruct_head'_and | progress subst | progress cbn [fst snd symbolic_reg_state symbolic_flag_state symbolic_mem_state dag_state fold_right] in * | break_innermost_match_hyps_step ].
all: repeat first [ solve [ eauto 10 ] | apply conj | progress cbv [eval_idx_Z] | match goal with | [ H : eval ?G ?d ?e ?v |- eval ?G ?d' ?e ?v' ] => cut (v' = v); [ solve [ intros ->; eauto 10 ] | ] end | progress change (Z.of_N 64) with 64%Z | rewrite !Z.land_ones by lia | progress autorewrite with zsimplify_const | progress (push_Zmod; pull_Zmod) ].
Qed.
Lemma compute_array_address_ok_bounded {opts : symbolic_options_computed_opt} {descr:description} G s s' base i idx base_val (H : compute_array_address base i s = Success (idx, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hidx : eval_idx_Z G d base base_val) (Hv : (0 <= base_val + 8 * Z.of_nat i < 2^64)%Z) : (eval_idx_Z G d' idx (base_val + 8 * Z.of_nat i) /\ r = r' /\ f = f' /\ m = m') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
set (v := (base_val + 8 * Z.of_nat i)%Z) in *.
replace v with (Z.land v (Z.ones (Z.of_N 64))); [ eapply compute_array_address_ok; eassumption | rewrite land_ones_eq_of_bounded by assumption ].
reflexivity.
Qed.
Lemma build_merge_array_addresses_ok {opts : symbolic_options_computed_opt} {descr:description} G s s' base base_val items addrs (H : build_merge_array_addresses base items s = Success (addrs, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (addrs_vals := List.map (fun i => Z.land (base_val + 8 * Z.of_nat i) (Z.ones 64)) (seq 0 (List.length items))) (Hbase : eval_idx_Z G d base base_val) : (r = r' /\ f = f' /\ (Forall2 (eval_idx_Z G d') addrs addrs_vals /\ (* TODO: Is this too specific a spec? *) List.rev (List.combine addrs items) ++ m = m')) /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
cbv [build_merge_array_addresses ret Symbolic.bind ErrorT.bind Crypto.Util.Option.bind] in H.
apply (@mapM_ok_via_upd G) with (upd_mem := fun st v => cons (let '((i, array_val_idx), array_addr_idx) := ((fst (fst v), snd (fst v)), snd v) in (array_addr_idx, array_val_idx)) st) (R_inv := fun st => eval_idx_Z G st base base_val) (R_static := fun _ => True) (R := fun st i_array_val_idx array_addr_idx => eval_idx_Z G st.(dag_state) array_addr_idx (Z.land (base_val + 8 * Z.of_nat (fst (i_array_val_idx))) (Z.ones 64))) (upd_flag := fun st _ => st) (upd_reg := fun st _ => st) in H; [ | clear H .. ].
all: repeat first [ progress inversion_option | progress inversion_ErrorT | progress subst | progress destruct_head'_and | progress destruct_head'_prod | progress subst_prod | progress cbn [fst snd dag_state update_dag_with update_mem_with symbolic_reg_state symbolic_flag_state symbolic_mem_state] in * | progress destruct_head'_ex | assumption | progress intros | solve [ eauto ] | rewrite @fold_left_id in * | match goal with | [ H : compute_array_address _ _ _ = _ |- _ ] => eapply compute_array_address_ok in H; [ | solve [ eassumption | cbv [eval_idx_Z] in *; eauto ] .. ] | [ H := _ |- _ ] => assert_fails constr_eq H offset; subst H | [ H : context[match ?x with Success _ => _ | _ => _ end] |- _ ] => destruct x eqn:? | [ |- Forall (fun _ => True) _ ] => rewrite Forall_forall end ].
{
cbv [eval_idx_Z update_mem_with symbolic_reg_state dag_state symbolic_mem_state symbolic_flag_state update_dag_with reg_index] in *; destruct_head' symbolic_state; subst.
repeat (apply conj; eauto; []).
setoid_rewrite <- fold_left_map with (f:=fun xs x => cons x xs).
rewrite <- (map_swap_combine (enumerate _)), List.map_map; cbn [fst snd]; cbv [enumerate] in *.
rewrite <- combine_map_r, map_snd_combine, seq_length, List.firstn_all, fold_left_cons.
repeat esplit; eauto using Forall2_weaken; try solve [ eapply Forall2_weaken; [ | eassumption ]; eauto ]; [].
rewrite Forall2_map_r_iff.
apply Forall2_flip.
replace (seq 0 (length items)) with (List.map fst (enumerate items)) by now cbv [enumerate]; rewrite map_fst_combine, firstn_all2 by now rewrite seq_length.
cbv [enumerate] in *.
rewrite Forall2_map_l_iff; eapply Forall2_weaken; [ | eassumption ]; intros *; cbv beta.
rewrite !Z.land_ones by lia; push_Zmod; pull_Zmod.
trivial.
}
{
(* addressing / loop body *)
cbv [eval_idx_Z update_mem_with symbolic_reg_state dag_state symbolic_mem_state symbolic_flag_state update_dag_with reg_index] in *; destruct_head' symbolic_state; subst.
eauto 20.
}
Qed.
Lemma compute_stack_base_G_ok {opts : symbolic_options_computed_opt} {descr:description} G G' s s' rv (rsp_val : Z) (stack_size : nat) (H : compute_stack_base_G rsp_val stack_size (G, s) = Some (rv, (G', s'))) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) : ((exists rsp_idx, set_reg r (reg_index rsp) rsp_idx = r' /\ eval_idx_Z G' d' rsp_idx (Z.land rsp_val (Z.ones 64))) /\ f = f' /\ m = m') /\ eval_idx_Z G' d' rv (Z.land (rsp_val - 8 * Z.of_nat stack_size) (Z.ones 64)) /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
cbv [compute_stack_base_G ret Symbolic.bind ErrorT.bind G.bind G.lift Crypto.Util.Option.bind lift_dag_G G.ret] in H.
break_match_hyps.
all: repeat first [ progress inversion_option | progress inversion_ErrorT | progress subst | progress destruct_head'_and | progress destruct_head'_prod | progress cbn [fst snd dag_state update_dag_with update_mem_with symbolic_reg_state symbolic_flag_state] in * | progress destruct_head'_prod | progress destruct_head'_ex | assumption | progress intros | solve [ eauto ] | progress break_innermost_match_hyps | rewrite @fold_left_id in * | progress cbv [Symbolic.App Merge] in * | progress cbn [fold_right update_dag_with Symbolic.dag_state Symbolic.symbolic_mem_state] in * | progress change (Z.of_N 64) with 64%Z in * | match goal with | [ H : (?x, ?y) = (?x', ?y') |- _ ] => first [ is_var x | is_var y ]; is_var x'; is_var y'; inversion H; clear H | [ H : (?x, (?y, ?z)) = (?x', (?y', ?z')) |- _ ] => is_var x; is_var y; is_var x'; is_var y'; is_var z'; inversion H; clear H | [ H : (tt, (?y, ?z)) = (tt, (?y', ?z')) |- _ ] => is_var y; is_var z; is_var y'; is_var z'; inversion H; clear H | [ H : context[simplify ?s ?n] |- _ ] => unshelve epose proof (@eval_simplify _ _ s n _ _ _); shelve_unifiable; [ solve [ repeat first [ eassumption | solve [ eauto ] | exactly_once econstructor ] ] .. | ]; generalize dependent (simplify s n); intros | [ H : context[merge ?e ?d] |- _ ] => pose proof (@eval_merge _ _ e _ d ltac:(eassumption) ltac:(eassumption)); generalize dependent (merge e d); intros | [ H : SetRegFresh_G _ _ _ = _ |- _ ] => eapply SetRegFresh_G_ok in H; [ | lazymatch goal with | [ |- index_and_shift_and_bitcount_of_reg _ = _ ] => cbv; reflexivity | _ => idtac end .. ]; [ | solve [ reflexivity | assumption | split; assumption ] .. ] | [ H : eval ?G ?d ?i ?v |- eval ?G ?d ?i ?v' ] => replace v' with v; [ exact H | ] | [ H := _ |- _ ] => subst H end | progress cbn [Symbolic.dag_state Symbolic.symbolic_reg_state Symbolic.symbolic_mem_state Symbolic.symbolic_flag_state] in * | progress destruct_head' symbolic_state | progress cbv [eval_idx_Z] in * | apply conj; eauto 10; [] | rewrite !Z.land_ones in * by lia | progress (push_Zmod; pull_Zmod) | f_equal; lia ].
Qed.
Lemma build_merge_stack_placeholders_G_ok {opts : symbolic_options_computed_opt} {descr:description} G G' s s' (rsp_val : Z) (stack_vals : list Z) stack_base (H : build_merge_stack_placeholders_G rsp_val stack_vals (G, s) = Some (stack_base, (G', s'))) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hstack_vals_bounded : Forall (fun v : Z => (0 <= v < 2 ^ 64)%Z) stack_vals) (stack_addr_vals := List.map (fun i => Z.land (rsp_val - 8 * Z.of_nat (List.length stack_vals) + 8 * Z.of_nat i) (Z.ones 64)) (seq 0 (List.length stack_vals))) : ((exists rsp_idx, set_reg r (reg_index rsp) rsp_idx = r' /\ eval_idx_Z G' d' rsp_idx (Z.land rsp_val (Z.ones 64))) /\ f = f' /\ (exists stack_addr_idxs stack_idxs, Forall2 (eval_idx_Z G' d') stack_addr_idxs stack_addr_vals /\ Forall2 (eval_idx_Z G' d') stack_idxs stack_vals /\ (* TODO: Is this too specific a spec? *) List.rev (List.combine stack_addr_idxs stack_idxs) ++ m = m') /\ eval_idx_Z G' d' stack_base (Z.land (rsp_val - 8 * Z.of_nat (List.length stack_vals)) (Z.ones 64))) /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
cbv [build_merge_stack_placeholders_G ret Symbolic.bind ErrorT.bind G.bind G.lift Crypto.Util.Option.bind lift_dag_G G.ret] in H.
break_match_hyps.
all: repeat first [ progress inversion_option | progress inversion_ErrorT | progress subst | progress destruct_head'_and | progress destruct_head'_prod | progress cbn [fst snd dag_state update_dag_with update_mem_with symbolic_reg_state symbolic_flag_state] in * | progress destruct_head'_prod | progress destruct_head'_ex | assumption | progress intros | solve [ eauto ] | progress break_innermost_match_hyps | rewrite @fold_left_id in * | progress cbv [Symbolic.App Merge] in * | progress cbn [fold_right update_dag_with Symbolic.dag_state Symbolic.symbolic_mem_state] in * | progress change (Z.of_N 64) with 64%Z in * | match goal with | [ H : (?x, ?y) = (?x', ?y') |- _ ] => first [ is_var x | is_var y ]; is_var x'; is_var y'; inversion H; clear H | [ H : (?x, (?y, ?z)) = (?x', (?y', ?z')) |- _ ] => is_var x; is_var y; is_var x'; is_var y'; is_var z'; inversion H; clear H | [ H : (tt, (?y, ?z)) = (tt, (?y', ?z')) |- _ ] => is_var y; is_var z; is_var y'; is_var z'; inversion H; clear H | [ H : compute_stack_base_G _ _ _ = _ |- _ ] => eapply compute_stack_base_G_ok in H; [ | assumption ] | [ H : build_inputarray_G _ _ = _ |- _ ] => apply build_inputarray_G_ok in H; [ | assumption .. ] | [ H : build_merge_array_addresses _ _ _ = _ |- _ ] => eapply build_merge_array_addresses_ok in H; [ | clear H; try solve [ assumption | lia ] .. ] | [ H := _ |- _ ] => subst H end ].
{
cbv [eval_idx_Z update_mem_with symbolic_reg_state dag_state symbolic_mem_state symbolic_flag_state update_dag_with reg_index] in *; destruct_head' symbolic_state; subst.
repeat (apply conj; eauto 10; []).
repeat esplit; eauto using Forall2_weaken; try solve [ eapply Forall2_weaken; [ | eassumption ]; eauto ]; [].
lazymatch goal with | [ H : Forall2 ?R ?l1 (List.map ?f (seq 0 ?n)) |- Forall2 ?R ?l1 (List.map ?f' (seq 0 ?n')) ] => cut (n = n'); [ intros <-; erewrite map_ext; [ eexact H | cbv beta ] | ] end.
{
intros; rewrite !Z.land_ones by lia; push_Zmod; pull_Zmod.
(* saturate with length congruences *)
repeat match goal with | [ H : Forall2 _ ?y ?x |- _ ] => unique assert (length y = length x) by eapply eq_length_Forall2, H | [ |- context[length (@List.map ?A ?B ?f ?x)] ] => unique assert (length (@List.map A B f x) = length x) by apply map_length end.
f_equal; lia.
}
{
eapply eq_length_Forall2; eassumption.
}
}
Qed.
(* TODO: move *)
Ltac handle_eval_eval := repeat match goal with | [ H : eval_idx_Z _ _ ?i _, H' : eval_idx_Z _ _ ?i _ |- _ ] => eapply eval_eval_idx_Z in H'; [ | eapply lift_eval_idx_Z_impl; [ | exact H ]; now eauto ] | [ H : eval _ _ ?i ?v, H' : eval _ _ ?i ?v' |- _ ] => eapply (@eval_eval _ _ _ v) in H'; [ | now eauto ] end.
Lemma build_merge_base_addresses_G_ok {opts : symbolic_options_computed_opt} {descr:description} {dereference_scalar:bool} : forall (idxs : list (idx + list idx)) (reg_available : list REG) (runtime_reg : list Z) G s G' s' outputaddrs (H : build_merge_base_addresses_G (dereference_scalar:=dereference_scalar) idxs reg_available runtime_reg (G, s) = Some (outputaddrs, (G', s'))) (d := s.(dag_state)) (Hvals : Forall2 (fun it rv => match it with | inl idx => if dereference_scalar then True else eval_idx_Z G d idx rv | inr _ => True end) idxs (List.firstn (List.length idxs) runtime_reg)) (Hreg : Nat.min (List.length idxs) (List.length reg_available) <= List.length runtime_reg) (Henough_reg : List.length idxs <= List.length reg_available) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hruntime_reg_bounded : Forall (fun v => (0 <= v < 2^64)%Z) runtime_reg) (Hreg_available_wide : Forall (fun reg => let '(rn, lo, sz) := index_and_shift_and_bitcount_of_reg reg in sz = 64%N) reg_available), ((exists (outputaddrs' : list (idx * option idx + idx * list idx)), let addrs_vals_of := fun base_reg_val addrs' => List.map (fun i => Z.land (base_reg_val + 8 * Z.of_nat i) (Z.ones 64)) (seq 0 (List.length addrs')) in fold_left (fun rst '(r, idx') => set_reg rst (reg_index r) match idx' with | inl (idx', _) => idx' | inr (base_idx', idxs') => base_idx' end) (List.combine reg_available outputaddrs') r = r' /\ ((* TODO: Is this too specific a spec? *) List.rev (List.flat_map (fun '(idx', idx) => match idx', idx with | inl (reg_val, Some addr), inl val => if dereference_scalar then [(addr, val)] else [] | inl _, _ | _, inl _ => [] | inr (base', addrs'), inr items => List.combine addrs' items end) (List.combine outputaddrs' idxs)) ++ m) = m' /\ (* outputaddrs' base / array *) Forall2 (fun idx' v => match idx' with | inl (idx', addr') (* scalars *) => eval_idx_Z G' d' idx' (Z.land v (Z.ones 64)) /\ option_eq (eval_idx_Z G' d') addr' (if dereference_scalar then Some (Z.land v (Z.ones 64)) else None) | inr (base', addrs') (* arrays: (exists base', (* set_reg r rn base' = r' /\ *) eval_idx_Z G' d' base' (Z.land base_reg_val (Z.ones 64))) *) => eval_idx_Z G' d' base' (Z.land v (Z.ones 64)) /\ (* arrays : Forall2 (eval_idx_Z G' d') addrs addrs_vals *) Forall2 (eval_idx_Z G' d') addrs' (addrs_vals_of v addrs') end) outputaddrs' (List.firstn (List.length outputaddrs') runtime_reg) /\ (* outputaddrs base: arrays: eval_idx_Z G' d' base (Z.land base_reg_val (Z.ones 64)) *) Forall2 (fun idx base_reg_val => match idx with | inr base => eval_idx_Z G' d' base (Z.land base_reg_val (Z.ones 64)) | inl (inr base) => eval_idx_Z G' d' base (Z.land base_reg_val (Z.ones 64)) | inl (inl r) => True end) outputaddrs (List.firstn (List.length outputaddrs) runtime_reg) /\ (* outputaddrs reg: *) Forall2 (fun idx r => match idx with | inl (inl r') => r = r' | inl (inr _) | inr _ => True end) outputaddrs (List.firstn (List.length outputaddrs) reg_available) /\ Forall2 (fun addr idx => match addr, idx with | inl (idx, _), inl val_idx => if dereference_scalar then True else forall v, (0 <= v < 2^64)%Z -> eval_idx_Z G' d' idx v <-> eval_idx_Z G' d' val_idx v | inr (_, ls), inr ls' => List.length ls = List.length ls' | inl _, inr _ | inr _, inl _ => False end) outputaddrs' idxs /\ Forall2 (fun addr idx => match addr, idx with | inl (inl _), inl (_, None) => dereference_scalar = false | inl (inr addr), inl (_, Some addr') => dereference_scalar = true /\ addr = addr' | inr _, inr _ => True | inl (inl _), inl (_, Some _) | inl (inr _), inl (_, None) => False | inl _, inr _ | inr _, inl _ => False end) outputaddrs outputaddrs') /\ f = f') /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
induction idxs as [|idx idxs IH], reg_available as [|reg_available reg_availables], runtime_reg as [|runtime_reg runtime_regs]; try specialize (IH reg_availables runtime_regs).
all: repeat first [ progress cbn [build_merge_base_addresses_G List.length firstn] in * | progress cbv [Symbolic.bind ErrorT.bind Symbolic.ret G.ret G.lift G.bind Crypto.Util.Option.bind] in * | progress intros | progress inversion_option | progress inversion_prod | progress subst | lia | apply conj; eauto; [] | solve [ exists nil; cbn [List.combine fold_left flat_map rev List.app length firstn]; eauto 10 ] ].
all: [ > ].
(* only one goal left *)
all: repeat first [ progress subst | progress inversion_option | progress destruct_head'_prod | progress destruct_head'_unit | progress destruct_head'_and | progress destruct_head'_ex | assumption | progress specialize_by_assumption | progress specialize_by (eapply Forall2_weaken; [ | eassumption ]; intros; break_innermost_match; eauto using lift_eval_idx_Z_impl) | progress cbn [length firstn List.combine fold_left flat_map rev Symbolic.dag_state Symbolic.symbolic_reg_state Symbolic.symbolic_mem_state Symbolic.symbolic_flag_state update_mem_with fst snd] in * | progress destruct_head' symbolic_state | match goal with | [ H : (_, _) = (_, _) |- _ ] => inversion H; clear H | [ H : Forall2 _ (_ :: _) _ |- _ ] => inversion H; clear H | [ H : Forall2 _ [] _ |- _ ] => inversion H; clear H | [ H : Forall _ (_ :: _) |- _ ] => inversion H; clear H | [ H : Forall _ [] |- _ ] => clear H | [ H : context[Nat.min (S _) (S _)] |- _ ] => rewrite <- Nat.succ_min_distr in H | [ H : S ?x <= S ?y |- _ ] => assert (x <= y) by (clear -H; lia); clear H | [ H : SetReg _ _ _ = _ |- _ ] => eapply SetReg_ok in H; [ | solve [ eassumption | reflexivity ] .. ] | [ H : SetRegFresh_G _ _ _ = _ |- _ ] => eapply SetRegFresh_G_ok in H; [ | solve [ reflexivity | assumption | split; assumption | cbv [index_and_shift_and_bitcount_of_reg] in *; congruence ] .. ] | [ H : build_merge_array_addresses _ _ _ = _ |- _ ] => eapply build_merge_array_addresses_ok in H; [ | solve [ eassumption | reflexivity ] .. ] | [ IH : forall G s G' s' outputaddrs, build_merge_base_addresses_G ?idxs ?reg_availables ?runtime_regs (G, s) = Some (outputaddrs, (G', s')) -> _, H : build_merge_base_addresses_G ?idxs ?reg_availables ?runtime_regs (?Gv, ?sv) = Some (?outputaddrsv, (?G'v, ?s'v)) |- _ ] => specialize (IH _ _ _ _ _ H); clear H (* | [ H : symbolic_flag_state _ = symbolic_flag_state ?x, H' : symbolic_flag_state ?x = _ |- _ ] => is_var x; destruct x*) end | break_innermost_match_hyps_step | apply conj; eauto 10; [] | progress cbv [index_and_shift_and_bitcount_of_reg] in * ].
(* above is all reversible, evar-free; below is irreversible *)
all: exactly_once ((lazymatch goal with |- context[inr _ :: _] => idtac end; eexists (inr (_, _) :: _)) + (lazymatch goal with |- context[inl (inl _) :: _] => idtac end; eexists (inl (_, None) :: _)) + (lazymatch goal with |- context[inl (inr _) :: _] => idtac end; eexists (inl (_, Some _) :: _))).
all: repeat repeat first [ progress cbn [length firstn List.combine fold_left flat_map rev] in * | progress intros | rewrite rev_app_distr | rewrite <- ?app_assoc; progress cbn [List.app] | rewrite !app_assoc | rewrite app_nil_r | progress cbv [option_eq] in * | progress inversion_prod | progress subst | progress handle_eval_eval | (* instantiate evars early to avoid wrong instantiations *) match goal with | [ |- context[?x ++ ?y :: ?z = ?x' ++ ?y' :: ?z] ] => progress unify y y' end | reflexivity | eassumption | solve [ eauto using Forall2_weaken, lift_eval_idx_Z_impl ] | apply conj | match goal with | [ |- Forall2 _ (_ :: _) (_ :: _) ] => constructor | [ |- fold_left ?f _ _ = fold_left ?f _ _ ] => f_equal | [ |- _ :: _ = _ :: _ ] => f_equal | [ |- (_, _) = (_, _) ] => f_equal | [ |- ?x ++ ?y = ?x' ++ ?y ] => f_equal | [ |- ?x ++ ?y = ?x ++ ?y' ] => f_equal | [ |- rev _ = rev _ ] => apply f_equal | [ |- ?x ++ ?y = ?y ] => cut (x = []); [ now intros -> | ] | [ |- ?y ++ ?x = ?y ] => cut (x = []); [ now intros ->; rewrite app_nil_r | ] | [ |- rev ?x = nil ] => cut (x = []); [ now intros -> | ] | [ H : eval_idx_Z _ _ ?i ?v |- eval_idx_Z _ _ ?i ?v' ] => cut (v' = v); [ intros ->; eapply lift_eval_idx_Z_impl; [ | exact H ]; eauto | rewrite !Z.land_ones, !Z.mod_small by lia ] (*| [ |- match ?e with inl _ => ?v | inr _ => _ end = ?v' ] => assert_fails unify v v'; instantiate (1:=ltac:(right; repeat exactly_once econstructor)); reflexivity*) | [ H : Forall2 _ ?l (List.map _ (seq 0 (length ?l'))) |- _ ] => is_var l; is_var l'; assert_fails constr_eq l l'; let H' := fresh in assert (H' : length l' = length l) by (now apply eq_length_Forall2 in H; rewrite H, map_length, seq_length); rewrite H' in * | [ H : Forall2 _ ?l (List.map ?f ?ls) |- Forall2 _ ?l (List.map ?f' ?ls) ] => erewrite map_ext; [ eapply Forall2_weaken; [ | exact H ] | cbv beta ]; [ eauto using lift_eval_idx_Z_impl | intros; rewrite !Z.land_ones by lia; push_Zmod; pull_Zmod ] end ].
Qed.
Lemma compute_stack_ok {opts : symbolic_options_computed_opt} {descr:description} G s s' base (rsp_val : Z) (stack_size : nat) (H : compute_stack_base stack_size s = Success (base, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) : exists G', ((exists rsp_idx, set_reg r (reg_index rsp) rsp_idx = r' /\ eval_idx_Z G' d' rsp_idx (Z.land rsp_val (Z.ones 64))) /\ f = f' /\ m = m') /\ eval_idx_Z G' d' base (Z.land (rsp_val - 8 * Z.of_nat stack_size) (Z.ones 64)) /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
eapply compute_stack_base_eq_G in H.
destruct H as [G' H]; exists G'.
eapply compute_stack_base_G_ok in H; try eassumption.
Qed.
Lemma build_merge_stack_placeholders_ok {opts : symbolic_options_computed_opt} {descr:description} G s s' (rsp_val : Z) (stack_vals : list Z) stack_base (H : build_merge_stack_placeholders (List.length stack_vals) s = Success (stack_base, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hstack_vals_bounded : Forall (fun v : Z => (0 <= v < 2 ^ 64)%Z) stack_vals) (stack_addr_vals := List.map (fun i => Z.land (rsp_val - 8 * Z.of_nat (List.length stack_vals) + 8 * Z.of_nat i) (Z.ones 64)) (seq 0 (List.length stack_vals))) : exists G', ((exists rsp_idx, set_reg r (reg_index rsp) rsp_idx = r' /\ eval_idx_Z G' d' rsp_idx (Z.land rsp_val (Z.ones 64))) /\ f = f' /\ (exists stack_addr_idxs stack_idxs, Forall2 (eval_idx_Z G' d') stack_addr_idxs stack_addr_vals /\ Forall2 (eval_idx_Z G' d') stack_idxs stack_vals /\ (* TODO: Is this too specific a spec? *) List.rev (List.combine stack_addr_idxs stack_idxs) ++ m = m') /\ eval_idx_Z G' d' stack_base (Z.land (rsp_val - 8 * Z.of_nat (List.length stack_vals)) (Z.ones 64))) /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
eapply build_merge_stack_placeholders_eq_G in H.
destruct H as [G' H]; exists G'.
eapply build_merge_stack_placeholders_G_ok in H; try eassumption.
Qed.
Lemma build_merge_base_addresses_ok {opts : symbolic_options_computed_opt} {descr:description} {dereference_scalar:bool} (idxs : list (idx + list idx)) (reg_available : list REG) (runtime_reg : list Z) G s (d := s.(dag_state)) (Hvals : Forall2 (fun it rv => match it with | inl idx => if dereference_scalar then True else eval_idx_Z G d idx rv | inr _ => True end) idxs (List.firstn (List.length idxs) runtime_reg)) (Hreg : Nat.min (List.length idxs) (List.length reg_available) <= List.length runtime_reg) (Henough_reg : List.length idxs <= List.length reg_available) s' (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) outputaddrs (H : build_merge_base_addresses (dereference_scalar:=dereference_scalar) idxs reg_available s = Success (outputaddrs, s')) (Hd : gensym_dag_ok G d) (Hruntime_reg_bounded : Forall (fun v => (0 <= v < 2^64)%Z) runtime_reg) (Hreg_available_wide : Forall (fun reg => let '(rn, lo, sz) := index_and_shift_and_bitcount_of_reg reg in sz = 64%N) reg_available) : exists G', ((exists (outputaddrs' : list (idx * option idx + idx * list idx)), let addrs_vals_of := fun base_reg_val addrs' => List.map (fun i => Z.land (base_reg_val + 8 * Z.of_nat i) (Z.ones 64)) (seq 0 (List.length addrs')) in fold_left (fun rst '(r, idx') => set_reg rst (reg_index r) match idx' with | inl (idx', _) => idx' | inr (base_idx', idxs') => base_idx' end) (List.combine reg_available outputaddrs') r = r' /\ ((* TODO: Is this too specific a spec? *) List.rev (List.flat_map (fun '(idx', idx) => match idx', idx with | inl (reg_val, Some addr), inl val => if dereference_scalar then [(addr, val)] else [] | inl _, _ | _, inl _ => [] | inr (base', addrs'), inr items => List.combine addrs' items end) (List.combine outputaddrs' idxs)) ++ m) = m' /\ (* outputaddrs' base / array *) Forall2 (fun idx' v => match idx' with | inl (idx', addr') (* scalars *) => eval_idx_Z G' d' idx' (Z.land v (Z.ones 64)) /\ option_eq (eval_idx_Z G' d') addr' (if dereference_scalar then Some (Z.land v (Z.ones 64)) else None) | inr (base', addrs') (* arrays: (exists base', (* set_reg r rn base' = r' /\ *) eval_idx_Z G' d' base' (Z.land base_reg_val (Z.ones 64))) *) => eval_idx_Z G' d' base' (Z.land v (Z.ones 64)) /\ (* arrays : Forall2 (eval_idx_Z G' d') addrs addrs_vals *) Forall2 (eval_idx_Z G' d') addrs' (addrs_vals_of v addrs') end) outputaddrs' (List.firstn (List.length outputaddrs') runtime_reg) /\ (* outputaddrs base: arrays: eval_idx_Z G' d' base (Z.land base_reg_val (Z.ones 64)) *) Forall2 (fun idx base_reg_val => match idx with | inr base => eval_idx_Z G' d' base (Z.land base_reg_val (Z.ones 64)) | inl (inr base) => eval_idx_Z G' d' base (Z.land base_reg_val (Z.ones 64)) | inl (inl r) => True end) outputaddrs (List.firstn (List.length outputaddrs) runtime_reg) /\ (* outputaddrs reg: *) Forall2 (fun idx r => match idx with | inl (inl r') => r = r' | inl (inr _) | inr _ => True end) outputaddrs (List.firstn (List.length outputaddrs) reg_available) /\ Forall2 (fun addr idx => match addr, idx with | inl (idx, _), inl val_idx => if dereference_scalar then True else forall v, (0 <= v < 2^64)%Z -> eval_idx_Z G' d' idx v <-> eval_idx_Z G' d' val_idx v | inr (_, ls), inr ls' => List.length ls = List.length ls' | inl _, inr _ | inr _, inl _ => False end) outputaddrs' idxs /\ Forall2 (fun addr idx => match addr, idx with | inl (inl _), inl (_, None) => dereference_scalar = false | inl (inr addr), inl (_, Some addr') => dereference_scalar = true /\ addr = addr' | inr _, inr _ => True | inl (inl _), inl (_, Some _) | inl (inr _), inl (_, None) => False | inl _, inr _ | inr _, inl _ => False end) outputaddrs outputaddrs') /\ f = f') /\ gensym_dag_ok G' d' /\ (forall e n, eval G d e n -> eval G' d' e n).
Proof.
eapply build_merge_base_addresses_eq_G in H; [ | eassumption .. ].
destruct H as [G' H]; exists G'.
eapply build_merge_base_addresses_G_ok in H; try eassumption.
Qed.
Lemma mapM_GetReg_ok_bounded {opts : symbolic_options_computed_opt} {descr:description} G : forall regs idxs reg_vals s s' (H : mapM GetReg regs s = Success (idxs, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hwide : Forall (fun reg => let '(_, _, sz) := index_and_shift_and_bitcount_of_reg reg in sz = 64%N) regs) (Hbounded : Forall (fun v => (0 <= v < 2^64)%Z) reg_vals) (Hregval_len : List.length regs = List.length reg_vals) (Hregval : Forall2 (fun idx v => forall idx', idx = Some idx' -> eval_idx_Z G s idx' v) (List.map (get_reg r) (List.map reg_index regs)) reg_vals), ((exists reg_idxs, List.map (get_reg r) (List.map reg_index regs) = List.map Some reg_idxs /\ Forall2 (eval_idx_Z G s') reg_idxs reg_vals) /\ Forall2 (eval_idx_Z G s') idxs reg_vals /\ r = r' /\ f = f' /\ m = m') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
induction regs as [|reg regs IH], idxs as [|idx idxs], reg_vals as [|reg_val reg_vals]; try specialize (IH idxs reg_vals).
all: repeat first [ progress cbn [mapM List.map fst snd Symbolic.dag_state Symbolic.symbolic_reg_state Symbolic.symbolic_mem_state Symbolic.symbolic_flag_state List.length] in * | progress cbv [Symbolic.ret Symbolic.bind ErrorT.bind] in * | progress intros | progress destruct_head'_ex | progress destruct_head'_prod | progress destruct_head'_and | progress inversion_option | progress inversion_ErrorT | progress inversion_prod | progress subst | progress inversion_list | progress inversion_nat_eq | progress specialize_by_assumption | progress destruct_head' symbolic_state | progress specialize_by (eapply Forall2_weaken; [ | eassumption ]; cbv [option_eq]; intros *; break_innermost_match; eauto using lift_eval_idx_Z_impl) | exfalso; lia | match goal with | [ H : Forall2 _ (_ :: _) _ |- _ ] => inversion H; clear H | [ H : Forall2 _ [] _ |- _ ] => inversion H; clear H | [ H : Forall _ (_ :: _) |- _ ] => inversion H; clear H | [ |- exists reg_idxs, _ :: _ = List.map Some reg_idxs /\ _ ] => eexists (_ :: _); cbn [List.map]; split; [ apply f_equal2; eassumption | ] | [ IH : forall s s', mapM ?f ?ls s = Success (?v, s') -> _, H : mapM ?f ?ls _ = Success (?v, _) |- _ ] => specialize (IH _ _ H) | [ H : forall ls, nil = List.map _ ls -> _ |- _ ] => specialize (H nil eq_refl) | [ |- exists ls, nil = List.map _ ls /\ _ ] => exists nil | [ H : get_reg ?r ?ri = Some ?i, H' : eval_idx_Z ?G ?d ?i ?v |- _ ] => unique assert (forall i', get_reg r ri = Some i' -> eval_idx_Z G d i' v) by now intro; rewrite H; inversion 1; subst; assumption | [ H : option_eq _ _ (Some _) |- _ ] => cbv [option_eq] in H | [ H : GetReg _ _ = _ |- _ ] => eapply GetReg_ok_bounded in H; [ | solve [ eassumption | reflexivity | lia ] .. ] | [ |- Forall2 _ (_ :: _) (_ :: _) ] => constructor end | solve [ eauto 10 using lift_eval_idx_Z_impl ] | break_innermost_match_hyps_step | apply conj; eauto 10 using lift_eval_idx_Z_impl; [] ].
Qed.
Lemma reg_all_set_set_reg r regs i v : Forall (fun v => Option.is_Some v = true) (List.map (get_reg r) regs) -> Forall (fun v => Option.is_Some v = true) (List.map (get_reg (set_reg r i v)) regs).
Proof.
rewrite !Forall_map; apply Forall_impl; intro.
rewrite get_reg_set_reg_full.
cbv [Option.is_Some]; break_innermost_match; congruence.
Qed.
Lemma reg_all_set_fold_left {A} r regs f (ls : list A) (Hf : forall rst v, List.In v ls -> Forall (fun v => Option.is_Some v = true) (List.map (get_reg rst) regs) -> Forall (fun v => Option.is_Some v = true) (List.map (get_reg (f rst v)) regs)) : Forall (fun v => Option.is_Some v = true) (List.map (get_reg r) regs) -> Forall (fun v => Option.is_Some v = true) (List.map (get_reg (fold_left f ls r)) regs).
Proof.
revert r; induction ls as [|x xs IH]; intros; cbn [fold_left]; auto.
apply IH; break_innermost_match; intros; apply Hf; cbn [List.In] in *; auto.
Qed.
Lemma eq_load_remove_iff a s v : load a s = Some v <-> exists ls, fst (remove a s) = v :: ls.
Proof.
split; cbv [load remove]; revert v.
all: induction s as [|?? IH]; intros *; cbn; break_innermost_match; cbn.
all: intros; inversion_option; destruct_head'_ex; inversion_list; subst; eauto.
Qed.
Lemma eq_load_remove a s : load a s = nth_error (fst (remove a s)) 0.
Proof.
pose proof (eq_load_remove_iff a s).
split_iff.
destruct (load a s), (fst (remove a s)); cbn.
all: try match goal with H : _ |- _ => specialize (H _ eq_refl) end.
all: try match goal with H : _ |- _ => specialize (H _ (ex_intro _ _ eq_refl)) end.
all: destruct_head'_ex; inversion_list; inversion_option; subst; try reflexivity.
Qed.
Lemma eq_load_of_remove a s v ls : fst (remove a s) = v :: ls -> load a s = Some v.
Proof.
intro H; rewrite eq_load_remove, H; reflexivity.
Qed.
Definition same_reg_some (s1 s2 : Symbolic.reg_state) : Prop := forall reg, Option.is_Some (get_reg s1 (reg_index reg)) = true -> Option.is_Some (get_reg s2 (reg_index reg)) = true.
Local Instance same_reg_some_trans : Transitive same_reg_some | 100.
Proof.
cbv [Transitive same_reg_some]; eauto.
Qed.
Class same_reg_some_of_success {T} (f : M T) := success_same_reg : forall v s s', f s = Success (v, s') -> same_reg_some s s'.
Local Ltac same_reg_some_of_success_t_step_normal_nobreak := first [ match goal with | [ H : context[set_reg _ _ ?v] |- _ ] => tryif is_var v then fail else generalize dependent v; intros end | progress cbv [same_reg_some_of_success] in * | progress intros | reflexivity | assumption | progress inversion_ErrorT | progress destruct_head'_prod | progress cbn [fst snd Symbolic.symbolic_reg_state] in * | progress cbv [update_dag_with update_mem_with update_flag_with update_reg_with Symbolic.bind Symbolic.ret Symbolic.err some_or ErrorT.bind] in * | progress inversion_pair | progress subst | match goal with | [ H : _ = Success _ |- _ ] => apply success_same_reg in H | [ |- same_reg_some _ (set_reg _ _ _) ] => cbv [same_reg_some] in *; intros; rewrite get_reg_set_reg_full; break_innermost_match end | cbv [same_reg_some] in *; eauto with nocore; congruence ].
Local Ltac same_reg_some_of_success_t_step_normal := first [ same_reg_some_of_success_t_step_normal_nobreak | break_innermost_match_hyps_step ].
Local Ltac same_reg_some_of_success_t_step_unfold := match goal with | [ H : ?f = Success _ |- _ ] => let f' := head f in (*idtac f';*) progress unfold f' in H end.
Local Ltac same_reg_some_of_success_t_step_unfold_go := repeat same_reg_some_of_success_t_step_normal; same_reg_some_of_success_t_step_unfold; repeat same_reg_some_of_success_t_step_normal.
Local Ltac same_reg_some_of_success_t := repeat first [ same_reg_some_of_success_t_step_normal | same_reg_some_of_success_t_step_unfold ].
(* TODO: move? *)
Local Instance Merge_reg_same {descr:description} x : same_reg_some_of_success (Symbolic.Merge x).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance App_reg_same {opts : symbolic_options_computed_opt} {descr:description} x : same_reg_some_of_success (Symbolic.App x).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance GetReg_reg_same {opts : symbolic_options_computed_opt} {descr:description} r : same_reg_some_of_success (GetReg r).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance Address_reg_same {opts : symbolic_options_computed_opt} {descr:description} {sa:AddressSize} a : same_reg_some_of_success (Address a).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance GetOperand_reg_same {opts : symbolic_options_computed_opt} {descr:description} {sz:OperationSize} {sa:AddressSize} arg : same_reg_some_of_success (GetOperand arg).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance GetFlag_reg_same f : same_reg_some_of_success (GetFlag f).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance SetOperand_reg_same {opts : symbolic_options_computed_opt} {descr:description} {sz:OperationSize} {sa:AddressSize} arg v : same_reg_some_of_success (SetOperand arg v).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance SetFlag_reg_same f v : same_reg_some_of_success (SetFlag f v).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance RevealConst_reg_same v : same_reg_some_of_success (RevealConst v).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance Reveal_reg_same v1 v2 : same_reg_some_of_success (Reveal v1 v2).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance HavocFlags_reg_same : same_reg_some_of_success HavocFlags.
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance ret_reg_same {T} (v : T) : same_reg_some_of_success (ret v).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance bind_reg_same {A B} f v {H0 : same_reg_some_of_success v} {H1 : forall v', same_reg_some_of_success (f v')} : same_reg_some_of_success (@Symbolic.bind A B v f).
Proof.
same_reg_some_of_success_t.
Qed.
(* TODO: move? *)
Local Instance mapM_reg_same {A B} f ls {H1 : forall v', same_reg_some_of_success (f v')} : same_reg_some_of_success (@mapM A B f ls).
Proof.
induction ls as [|?? IH]; cbn [mapM]; same_reg_some_of_success_t.
Defined.
(* TODO: move? *)
Fixpoint Symeval_reg_same opts descr sz sa args {struct args} : same_reg_some_of_success (@Symeval opts descr sz sa args).
Proof.
destruct args; cbn [Symeval] in *; typeclasses eauto.
Qed.
Local Existing Instance Symeval_reg_same.
#[global] Typeclasses Opaque Symeval.
#[global] Typeclasses Transparent AddressSize OperationSize.
(* TODO: move? *)
Local Instance SymexNormalInstruction_reg_same {opts : symbolic_options_computed_opt} {descr:description} instr : same_reg_some_of_success (SymexNormalInstruction instr).
Proof.
destruct instr; cbv [SymexNormalInstruction err Symbolic.bind ret Syntax.op Syntax.args ErrorT.bind same_reg_some_of_success] in *; intros.
same_reg_some_of_success_t.
all: cbv [same_reg_some] in *; eauto 10 with nocore.
all: intro reg; repeat match goal with H : forall r : REG, _ |- _ => specialize (H reg) end.
all: rewrite !@get_reg_set_reg_full in *.
all: break_innermost_match_hyps.
all: cbn [Option.is_Some] in *.
all: eauto.
Qed.
(* TODO: move? *)
Local Instance SymexLine_reg_same {opts : symbolic_options_computed_opt} line : same_reg_some_of_success (SymexLine line).
Proof.
cbv [SymexLine SymexRawLine err ret] in *; break_innermost_match; try congruence.
apply SymexNormalInstruction_reg_same.
Qed.
(* TODO: move? *)
Lemma SymexLines_reg_same {opts : symbolic_options_computed_opt} lines s s' (H : SymexLines lines s = Success (tt, s')) : same_reg_some s s'.
Proof.
revert s H.
induction lines as [|line lines IH]; cbn [SymexLines]; cbv [Symbolic.ret Symbolic.bind ErrorT.bind]; intros *; break_innermost_match; intros; inversion_ErrorT; inversion_pair; subst; try now (hnf; eauto with nocore).
same_reg_some_of_success_t.
Qed.
Definition same_mem_addressed (s1 s2 : Symbolic.mem_state) : Prop := List.map fst s1 = List.map fst s2.
Lemma update_nth_fst_mem_same m1 n y : same_mem_addressed m1 (update_nth n (fun ptsto : idx * idx => (fst ptsto, y)) m1).
Proof.
revert n m1.
cbv [same_mem_addressed]; induction n as [|n IH], m1 as [|? m1]; cbn [update_nth List.map fst]; f_equal; eauto.
Qed.
(* TODO: move? *)
Lemma store_mem_same x y m1 m2 (H : store x y m1 = Some m2) : same_mem_addressed m1 m2.
Proof.
cbv [store Crypto.Util.Option.bind] in *; break_innermost_match_hyps; inversion_option; subst.
apply update_nth_fst_mem_same.
Qed.
Class same_mem_addressed_of_success {T} (f : M T) := success_same_mem : forall v s s', f s = Success (v, s') -> same_mem_addressed s s'.
Local Ltac same_mem_addressed_of_success_t_step_normal_nobreak := first [ progress cbv [same_mem_addressed_of_success] in * | progress intros | reflexivity | assumption | progress inversion_ErrorT | progress destruct_head'_prod | progress cbn [fst snd Symbolic.symbolic_mem_state] in * | progress cbv [update_dag_with update_mem_with update_flag_with update_reg_with Symbolic.bind Symbolic.ret Symbolic.err some_or ErrorT.bind] in * | progress inversion_pair | progress subst | match goal with | [ H : store _ _ _ = Some _ |- _ ] => apply store_mem_same in H | [ H : _ = Success _ |- _ ] => apply success_same_mem in H end | cbv [same_mem_addressed] in *; congruence ].
Local Ltac same_mem_addressed_of_success_t_step_normal := first [ same_mem_addressed_of_success_t_step_normal_nobreak | break_innermost_match_hyps_step ].
Local Ltac same_mem_addressed_of_success_t_step_unfold := match goal with | [ H : ?f = Success _ |- _ ] => let f' := head f in (*idtac f';*) progress unfold f' in H end.
Local Ltac same_mem_addressed_of_success_t_step_unfold_go := repeat same_mem_addressed_of_success_t_step_normal; same_mem_addressed_of_success_t_step_unfold; repeat same_mem_addressed_of_success_t_step_normal.
Local Ltac same_mem_addressed_of_success_t := repeat first [ same_mem_addressed_of_success_t_step_normal | same_mem_addressed_of_success_t_step_unfold ].
(* TODO: move? *)
Local Instance Merge_mem_same {descr:description} x : same_mem_addressed_of_success (Symbolic.Merge x).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance App_mem_same {opts : symbolic_options_computed_opt} {descr:description} x : same_mem_addressed_of_success (Symbolic.App x).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance GetReg_mem_same {opts : symbolic_options_computed_opt} {descr:description} r : same_mem_addressed_of_success (GetReg r).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance Address_mem_same opts descr sa a : same_mem_addressed_of_success (@Address opts descr sa a).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance GetOperand_mem_same opts descr sz sa arg : same_mem_addressed_of_success (@GetOperand opts descr sz sa arg).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance GetFlag_mem_same f : same_mem_addressed_of_success (GetFlag f).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance SetOperand_mem_same opts descr sz sa arg v : same_mem_addressed_of_success (@SetOperand opts descr sz sa arg v).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance SetFlag_mem_same f v : same_mem_addressed_of_success (SetFlag f v).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance RevealConst_mem_same v : same_mem_addressed_of_success (RevealConst v).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance Reveal_mem_same v1 v2 : same_mem_addressed_of_success (Reveal v1 v2).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance HavocFlags_mem_same : same_mem_addressed_of_success HavocFlags.
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance ret_mem_same {T} (v : T) : same_mem_addressed_of_success (ret v).
Proof.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance bind_mem_same {A B} f v {H0 : same_mem_addressed_of_success v} {H1 : forall v', same_mem_addressed_of_success (f v')} : same_mem_addressed_of_success (@Symbolic.bind A B v f).
Proof.
same_mem_addressed_of_success_t.
specialize (H0 _ _ _ ltac:(eassumption)).
specialize (H1 _ _ _ _ ltac:(eassumption)).
cbv [same_mem_addressed] in *; congruence.
Qed.
(* TODO: move? *)
Local Instance mapM_mem_same {A B} f ls {H1 : forall v', same_mem_addressed_of_success (f v')} : same_mem_addressed_of_success (@mapM A B f ls).
Proof.
induction ls as [|?? IH]; cbn [mapM]; same_mem_addressed_of_success_t.
specialize (IH _ _ _ ltac:(eassumption)).
specialize (H1 _ _ _ _ ltac:(eassumption)).
same_mem_addressed_of_success_t.
Defined.
(* TODO: move? *)
Fixpoint Symeval_mem_same opts descr sz sa args {struct args} : same_mem_addressed_of_success (@Symeval opts descr sz sa args).
Proof.
destruct args; cbn [Symeval] in *; typeclasses eauto.
Qed.
Local Existing Instance Symeval_mem_same.
#[global] Typeclasses Opaque Symeval.
#[global] Typeclasses Transparent AddressSize OperationSize.
(* TODO: move? *)
Local Instance SymexNormalInstruction_mem_same {opts : symbolic_options_computed_opt} {descr:description} instr : same_mem_addressed_of_success (SymexNormalInstruction instr).
Proof.
destruct instr; cbv [SymexNormalInstruction err Symbolic.bind ret Syntax.op Syntax.args ErrorT.bind same_mem_addressed_of_success] in *; intros.
same_mem_addressed_of_success_t.
Qed.
(* TODO: move? *)
Local Instance SymexLine_mem_same {opts : symbolic_options_computed_opt} line : same_mem_addressed_of_success (SymexLine line).
Proof.
cbv [SymexLine SymexRawLine err ret] in *; break_innermost_match; try congruence.
apply SymexNormalInstruction_mem_same.
Qed.
(* TODO: move? *)
Lemma SymexLines_mem_same {opts : symbolic_options_computed_opt} lines s s' (H : SymexLines lines s = Success (tt, s')) : same_mem_addressed s s'.
Proof.
revert s H.
induction lines as [|line lines IH]; cbn [SymexLines]; cbv [Symbolic.ret Symbolic.bind ErrorT.bind]; intros *; break_innermost_match; intros; inversion_ErrorT; inversion_pair; subst; try reflexivity.
specialize (IH _ ltac:(eassumption)).
same_mem_addressed_of_success_t.
Qed.
Lemma same_mem_addressed_alt l1 l2 (H : same_mem_addressed l1 l2) : exists l2b, List.combine (List.map fst l1) l2b = l2 /\ List.length l2b = List.length l1.
Proof.
cbv [same_mem_addressed] in *.
rewrite H.
pose proof (split_combine l2) as H'.
rewrite split_alt in H'.
eexists; split; [ now eauto | ].
apply (f_equal (@List.length _)) in H.
rewrite !map_length in *; congruence.
Qed.
Lemma same_mem_addressed_app_ex_r l1 l2 l3 (H : same_mem_addressed (l1 ++ l2) l3) : exists l3a l3b, l3a ++ l3b = l3 /\ same_mem_addressed l1 l3a /\ same_mem_addressed l2 l3b.
Proof.
cbv [same_mem_addressed] in *.
rewrite map_app in H.
exists (firstn (List.length l1) l3), (skipn (List.length l1) l3).
rewrite <- firstn_map, <- skipn_map, <- H, firstn_app, skipn_app, map_length, Nat.sub_diag, firstn_O, skipn_O, firstn_skipn, firstn_all, (skipn_all (List.length l1)), app_nil_l, app_nil_r by now rewrite map_length; lia.
auto.
Qed.
Lemma same_mem_addressed_rev_ex_r l1 l2 (H : same_mem_addressed (List.rev l1) l2) : exists l3, List.rev l3 = l2 /\ same_mem_addressed l1 l3.
Proof.
cbv [same_mem_addressed] in *.
exists (List.rev l2).
rewrite map_rev, <- H, map_rev, !rev_involutive.
auto.
Qed.
Lemma same_mem_addressed_combine_ex_r_helper1 l1a l1b l2 (H : same_mem_addressed (List.combine l1a l1b) l2) : exists l2b, List.combine (firstn (List.length l1b) l1a) l2b = l2 /\ List.length l2b = List.length l2.
Proof.
cbv [same_mem_addressed] in *.
exists (List.map snd l2); split; [ | distr_length; lia ].
rewrite map_fst_combine in H.
pose proof (split_combine l2) as H'.
rewrite split_alt, <- H in H'.
now eauto.
Qed.
Lemma same_mem_addressed_combine_ex_r_helper2 l1a l1b l2 (H : same_mem_addressed (List.combine l1a l1b) l2) : exists l2b, List.combine l1a l2b = l2 /\ List.length l2b = Nat.min (List.length l1b) (List.length l1a).
Proof.
pose proof (f_equal (@List.length _) H).
apply same_mem_addressed_combine_ex_r_helper1 in H.
destruct H as [l2b [H ?] ].
exists (firstn (List.length l1b) l2b).
subst.
split; [ | distr_length; lia ].
etransitivity; rewrite combine_truncate_l, combine_truncate_r; [ | reflexivity ].
rewrite ?firstn_app, ?firstn_firstn_min.
autorewrite with distr_length in *.
do 2 f_equal; lia.
Qed.
Lemma same_mem_addressed_combine_ex_r l1a l1b l2 (H : same_mem_addressed (List.combine l1a l1b) l2) : exists l2b, List.combine l1a l2b = l2 /\ List.length l2b = List.length l1b.
Proof.
apply same_mem_addressed_combine_ex_r_helper2 in H.
destruct H as [l2b [H H'] ].
exists (l2b ++ skipn (List.length l1a) l1b).
autorewrite with distr_length in *.
split; [ | lia ].
rewrite combine_truncate_r, firstn_app.
rewrite <- (firstn_skipn (List.length l1a) l2b) in H.
rewrite H'; subst.
do 2 (apply f_equal2; try reflexivity; []).
generalize dependent (List.length l1a); clear l1a; intros.
revert H'; apply Nat.min_case_strong; intros H0 H1; subst.
all: autorewrite with natsimplify.
all: rewrite ?firstn_O, ?skipn_all, ?firstn_nil by lia.
all: reflexivity.
Qed.
Lemma same_mem_addressed_nil ls (H : same_mem_addressed nil ls) : nil = ls.
Proof.
destruct ls; cbv in H; congruence.
Qed.
Lemma symbolic_mem_state_nil d : symbolic_mem_state (init_symbolic_state d) = nil.
Proof.
cbv [init_symbolic_state]; break_innermost_match; reflexivity.
Qed.
Lemma same_mem_addressed_init_symbolic_state d ls (H : same_mem_addressed (init_symbolic_state d) ls) : symbolic_mem_state (init_symbolic_state d) = ls.
Proof.
rewrite symbolic_mem_state_nil in *.
apply same_mem_addressed_nil, H.
Qed.
Lemma same_mem_addressed_flat_map_combine_addrs_ex_r {dereference_scalar:bool} {T} (ls1 : list (_ + T * _)) ls2 ls' (H : same_mem_addressed (List.flat_map (fun '(idx', idx) => match idx', idx with | inl addr_or_val, inl val => if dereference_scalar then [(addr_or_val, val)] else [] | inl _, _ | _, inl _ => [] | inr (base', addrs'), inr items => List.combine addrs' items end) (List.combine ls1 ls2)) ls') : exists ls'2, List.flat_map (fun '(idx', idx) => match idx', idx with | inl addr_or_val, inl val => if dereference_scalar then [(addr_or_val, val)] else [] | inl _, _ | _, inl _ => [] | inr (base', addrs'), inr items => List.combine addrs' items end) (List.combine ls1 ls'2) = ls' /\ Forall2 (fun idx idx' => match idx, idx' with | inl val, inl val' => if dereference_scalar then True else val = val' | inr items, inr items' => List.length items = List.length items' | inl _, inr _ | inr _, inl _ => False end) ls2 ls'2.
Proof.
revert dependent ls'.
revert ls1 ls2.
induction ls1 as [|?? IH], ls2 as [|? ls2]; try specialize (IH ls2); cbn [List.combine List.map List.flat_map]; intros.
all: repeat first [ progress subst | progress destruct_head'_and | progress destruct_head'_ex | (now exists nil) | reflexivity | specialize (IH _ ltac:(eassumption)) | match goal with | [ H : same_mem_addressed nil _ |- _ ] => apply same_mem_addressed_nil in H | [ H : same_mem_addressed (_ ++ _) _ |- _ ] => apply same_mem_addressed_app_ex_r in H | [ H : nil = List.map _ ?ls |- _ ] => is_var ls; destruct ls | [ H : same_mem_addressed match _ with _ => _ end ?x |- _ ] => is_var x; apply same_mem_addressed_alt in H | [ |- exists ls, nil = nil /\ Forall2 _ ?lsv ls ] => exists lsv; split; [ | apply Reflexive_forall2; intro; break_innermost_match ] end ].
eexists (_ :: _); cbn [flat_map]; split; [ apply f_equal2; [ | reflexivity ] | constructor; [ | assumption ] ].
2: lazymatch goal with | [ |- match ?s with | inl _ => match ?ev with | inr _ => False | _ => _ end | _ => _ end ] => let __ := open_constr:(eq_refl : ev = match s with inl val => inl (if dereference_scalar then _ else _) | inr items => inr (firstn (List.length items) ?[ls] ++ skipn (List.length ?ls) items)%list end) in break_innermost_match; autorewrite with distr_length; try exact I; try reflexivity; set_evars; lia end.
repeat first [ match goal with | [ |- match ?x with _ => _ end = List.combine (List.map _ match ?x with _ => _ end) _ ] => destruct x | [ |- match ?ev with inl _ => _ | inr _ => nil end = List.combine (List.map _ match ?x with inl _ => _ | inr _ => nil end) _ ] => is_evar ev; is_var x; let __ := open_constr:(eq_refl : ev = match x with inl _ => inl _ | inr _ => inr _ end) in destruct x | [ |- [(_, ?ev)] = match ?x with _ => _ end ] => is_evar ev; is_var x; let __ := open_constr:(eq_refl : ev = match x with nil => _ | _ :: _ => _ end) in destruct x | [ |- List.combine ?ls ?ev = List.combine (firstn (List.length ?ls') ?ls) ?x ] => is_evar ev; unify ev (firstn (List.length ls') x) end | exfalso; discriminate | reflexivity | rewrite map_fst_combine | progress cbn [List.map List.combine fst List.length] in * | break_innermost_match_step ].
match goal with | [ |- List.combine _ (firstn _ ?ev ++ skipn _ _) = List.combine _ ?ls ] => is_evar ev; unify ev ls end.
etransitivity; rewrite combine_truncate_l, combine_truncate_r; [ | reflexivity ].
rewrite ?firstn_app, ?firstn_firstn_min.
autorewrite with distr_length in *.
repeat first [ rewrite Nat.sub_diag | rewrite firstn_O | rewrite app_nil_r | reflexivity | match goal with | [ |- context[(Nat.min ?x ?y + (?x - ?y))%nat] ] => replace (Nat.min x y + (x - y))%nat with x by lia | [ |- context[Nat.min (Nat.min ?x ?y) ?x] ] => replace (Nat.min (Nat.min x y) x) with (Nat.min x y) by lia | [ H : ?x = Nat.min ?y ?z |- context[Nat.min ?x ?z] ] => replace (Nat.min x z) with (Nat.min y z) by lia | [ H : ?x = Nat.min ?y ?z |- context[Nat.min ?z ?x] ] => replace (Nat.min z x) with (Nat.min y z) by lia | [ |- context[(Nat.min ?x ?y - Nat.min ?y ?x)%nat] ] => rewrite (Nat.min_comm x y) | [ |- context[firstn ?n ?x] ] => rewrite (@firstn_all _ n x) by lia | [ |- context[firstn (Nat.min (List.length ?x) _) ?x] ] => rewrite (Nat.min_comm (List.length x)), <- (@firstn_firstn_min _ (List.length x) _ x) end ].
Unshelve.
constructor.
Qed.
Lemma update_update_dag_with s d0 d1 : update_dag_with (update_dag_with s d0) d1 = update_dag_with s (fun d => d1 (d0 d)).
Proof.
reflexivity.
Qed.
Definition same_index G d i1 i2 : Prop := i1 = i2 \/ exists v, eval_idx_Z G d i1 v /\ eval_idx_Z G d i2 v.
Local Instance same_index_Reflexive {G d} : Reflexive (same_index G d) | 100.
Proof.
cbv [same_index]; repeat intro; firstorder eauto.
Qed.
Local Instance same_index_Symmetric {G d} : Symmetric (same_index G d) | 100.
Proof.
cbv [same_index]; repeat intro; firstorder eauto.
Qed.
Local Instance same_index_Transitive {G d} : Transitive (same_index G d) | 100.
Proof.
cbv [same_index]; repeat intro; firstorder (handle_eval_eval; subst; eauto).
Qed.
Lemma same_index_of_eq {G d i1 i2} : i1 = i2 -> same_index G d i1 i2.
Proof.
intros; subst; left; reflexivity.
Qed.
Lemma lift_same_index_impl G d G' d' (H : forall e v, eval G d e v -> eval G' d' e v) : forall i1 i2, same_index G d i1 i2 -> same_index G' d' i1 i2.
Proof.
cbv [same_index eval_idx_Z]; repeat intro; firstorder (handle_eval_eval; subst; eauto).
Qed.
Definition unique_mem_addressed G d (s : mem_state) : Prop := NoDupA (fun v1 v2 => same_index G d (fst v1) (fst v2)) s.
Lemma Load64_ok G s s' addr addr_val idx (H : Load64 addr s = Success (idx, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Haddr : eval_idx_Z G d addr addr_val) : (load addr s' = Some idx /\ r = r' /\ f = f' /\ m = m') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
cbv [Load64 some_or] in *; break_innermost_match_hyps; inversion_ErrorT; inversion_pair; subst; intuition eauto.
Qed.
Lemma Remove64_ok G s s' addr idx (H : Remove64 addr s = Success (idx, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) : (r = r' /\ f = f' /\ Permutation m ((addr, idx) :: m') /\ Forall (fun x => (fst x =? addr)%N = false) m') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
cbv [Remove64 some_or remove] in *; break_innermost_match_hyps; inversion_ErrorT; inversion_pair; subst.
subst m m'.
rewrite <- List.partition_permutation by eassumption.
let H := match goal with H : partition _ _ = _ |- _ => H end in pose proof H as H'; apply List.Forall_partition in H'.
intuition eauto.
match goal with |- Permutation ?x ?y => cut (x = y); [ intros ->; reflexivity | ] end.
repeat first [ progress destruct_head'_and | progress cbn [List.map List.app fst snd] in * | progress inversion_list | progress subst | progress invlist Forall | progress reflect_hyps | progress destruct_head'_prod | reflexivity | match goal with | [ H : List.map _ ?s = _ :: _ |- _ ] => is_var s; destruct s | [ H : List.map _ ?s = [] |- _ ] => is_var s; destruct s end ].
Qed.
Local Existing Instance Permutation_cons | 0.
Lemma LoadArray_ok {opts : symbolic_options_computed_opt} {descr:description} G s s' base base_val len idxs (H : LoadArray base len s = Success (idxs, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Hbase : eval_idx_Z G d base base_val) : ((exists addrs : list idx, Permutation m (List.combine addrs idxs ++ m') /\ List.length idxs = len /\ Forall2 (eval_idx_Z G d') addrs (List.map (fun i => Z.land (base_val + 8 * Z.of_nat i) (Z.ones 64)) (seq 0 len)) /\ Forall (fun addr => Forall (fun x => (fst x =? addr)%N = false) m') addrs) /\ r = r' /\ f = f') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
cbv [LoadArray Symbolic.bind ErrorT.bind] in H.
subst d d' r r' f f' m m'.
revert H Hd Hbase.
replace (List.length idxs = len) with (List.length idxs = List.length (seq 0 len)) by now rewrite seq_length.
generalize (seq 0 len); intros indices; clear len.
revert indices idxs s s'.
induction indices as [|i indices IH], idxs as [|idx idxs]; try specialize (IH idxs).
all: repeat first [ progress intros | progress inversion_ErrorT | progress inversion_prod | progress subst | progress cbn [List.map Crypto.Util.Option.bind fold_right mapM fst snd Symbolic.dag_state Symbolic.symbolic_reg_state Symbolic.symbolic_mem_state Symbolic.symbolic_flag_state update_mem_with List.combine List.length] in * | progress cbv [Symbolic.ret Option.List.lift Symbolic.bind ErrorT.bind Load64 some_or] in * | discriminate | solve [ eauto 10 | exists nil; cbn [List.map]; eauto ] | progress destruct_head'_prod | progress destruct_head'_and | progress destruct_head'_ex | progress specialize_by_assumption | progress specialize_by eauto using lift_eval_idx_Z_impl | match goal with | [ H : _ :: _ = _ :: _ |- _ ] => inversion H; clear H | [ H : Remove64 _ _ = _ |- _ ] => eapply Remove64_ok in H; [ | eassumption .. ] | [ H : compute_array_address _ _ _ = _ |- _ ] => eapply compute_array_address_ok in H; [ | eassumption .. ] | [ IH : forall s s', mapM ?f ?ls s = Success (?v, s') -> _, H : mapM ?f ?ls _ = Success (?v, _) |- _ ] => specialize (IH _ _ H) | [ H : symbolic_flag_state _ = symbolic_flag_state ?x, H' : symbolic_flag_state ?x = _ |- _ ] => is_var x; destruct x | [ H : load _ ?s = Some _ |- context[load _ ?s] ] => rewrite H | [ H : Some _ = fold_right _ _ _ |- _ ] => rewrite <- H | [ |- Forall2 _ (_ :: _) (_ :: _) ] => constructor | [ H : Permutation ?s _ |- context[?s] ] => rewrite H | [ H : Permutation ?s _, H' : Forall _ ?ls |- _ ] => lazymatch ls with | context[?s] => rewrite H in H' end end | apply conj; (idtac + refine (reflexivity _)); eauto using lift_eval_idx_Z_impl; [] | break_innermost_match_hyps_step | progress break_match_hyps | solve [ eauto using lift_eval_idx_Z_impl ] | rewrite Forall2_cons_cons_iff | rewrite Forall_cons_iff | eexists (_ :: _) | match goal with | [ H : Forall _ (_ ++ _) |- _ ] => apply Forall_app in H end ].
Qed.
(* TODO: move? *)
Ltac saturate_lengths_step := let do_with ls := lazymatch ls with | @List.map ?A ?B ?f ?x => unique pose proof (@map_length A B f x) | @firstn ?A ?n ?x => unique pose proof (@firstn_length A n x) | @skipn ?A ?n ?x => unique pose proof (@skipn_length A n x) | @seq ?start ?len => unique pose proof (@seq_length start len) | @List.app ?A ?l ?l' => unique pose proof (@app_length A l l') | @List.combine ?A ?B ?l1 ?l2 => unique pose proof (@combine_length A B l1 l2) end in match goal with | [ |- context[length (?x ++ ?y)] ] => rewrite (app_length x y) | [ H : Forall2 _ ?y ?x |- _ ] => unique assert (length y = length x) by eapply eq_length_Forall2, H | [ |- context[length ?ls] ] => do_with ls | [ H : context[length ?ls] |- _ ] => do_with ls | [ H : nth_error _ _ = None |- _ ] => unique pose proof (@nth_error_error_length _ _ _ H) | [ H : nth_error _ _ = Some _ |- _ ] => unique pose proof (@nth_error_value_length _ _ _ _ H) end.
Ltac saturate_lengths := repeat saturate_lengths_step.
Lemma LoadOutputs_ok {opts : symbolic_options_computed_opt} {descr:description} {dereference_scalar:bool} G s s' outputaddrs output_types output_vals idxs (H : LoadOutputs (dereference_scalar:=dereference_scalar) outputaddrs output_types s = Success (Success idxs, s')) (d := s.(dag_state)) (d' := s'.(dag_state)) (r := s.(symbolic_reg_state)) (r' := s'.(symbolic_reg_state)) (f := s.(symbolic_flag_state)) (f' := s'.(symbolic_flag_state)) (m := s.(symbolic_mem_state)) (m' := s'.(symbolic_mem_state)) (Hd : gensym_dag_ok G d) (Houtputaddrs_array : Forall2 (fun idx val => match idx with | inl (inr idx) | inr idx => eval_idx_Z G d idx (Z.land val (Z.ones 64)) | _ => True end) outputaddrs output_vals) (Houtputaddrs_reg : Forall (fun idx => match idx with | inl (inl r) => (let '(rn, lo, sz) := index_and_shift_and_bitcount_of_reg r in sz = 64%N) /\ (exists v, forall idx', get_reg s (reg_index r) = Some idx' -> eval_idx_Z G s idx' (Z.land v (Z.ones 64))) /\ dereference_scalar = false | inl (inr _) => dereference_scalar = true | _ => True end) outputaddrs) : ((exists outputaddrs' : list (idx + list idx), Forall2 (fun idxs '((base, len), base_val) => match idxs, base, len with | inr idxs, inr base, Some len => Forall2 (eval_idx_Z G d') idxs (List.map (fun i => Z.land (base_val + 8 * Z.of_nat i) (Z.ones 64)) (seq 0 len)) | inl idx, inl (inl r), None => (exists idx', get_reg s' (reg_index r) = Some idx' /\ (exists v, (0 <= v < 2^64)%Z /\ eval_idx_Z G d' idx v /\ eval_idx_Z G d' idx' v)) /\ dereference_scalar = false | inl idx, inl (inr addr), None => idx = addr /\ eval_idx_Z G d' addr (Z.land base_val (Z.ones 64)) /\ dereference_scalar = true | _, _, _ => False end) outputaddrs' (List.combine (List.combine outputaddrs output_types) output_vals) /\ Permutation m (List.flat_map (fun '(addrs, idxs) => match addrs, idxs with | inr addrs, inr idxs => List.combine addrs idxs | inl addr, inl idx => if dereference_scalar then [(addr, idx)] else [] | inl _, inr _ | inr _, inl _ => [] end) (List.combine outputaddrs' idxs) ++ m') /\ Forall2 (fun addrs idxs => match addrs, idxs with | inl idx, inl val_idx => if dereference_scalar then True else idx = val_idx (*forall v, (0 <= v < 2^64)%Z -> eval_idx_Z G d' idx v <-> eval_idx_Z G d' val_idx v*) | inr addrs, inr idxs => List.length idxs = List.length addrs | inl _, inr _ | inr _, inl _ => False end) outputaddrs' idxs /\ Forall (fun addrs => match addrs with | inl idx => True | inr addrs => Forall (fun addr => Forall (fun x => (fst x =? addr)%N = false) m') addrs end) outputaddrs' /\ List.length output_types = List.length outputaddrs) /\ r = r' /\ f = f') /\ gensym_dag_ok G d' /\ (forall e n, eval G d e n -> eval G d' e n).
Proof.
cbv [LoadOutputs LoadOutputs_internal Symbolic.bind Symbolic.ret ErrorT.bind] in H.
destruct mapM eqn:?, (_ =? _)%nat eqn:?.
all: repeat first [ progress inversion_ErrorT | progress inversion_prod | progress subst | progress destruct_head'_prod | progress cbn [fst snd] in * | progress reflect_hyps | match goal with | [ H := _ |- _ ] => subst H end ].
match goal with | [ H : mapM _ _ _ = Success (?l, ?s) |- _ ] => rename l into idxs; rename s into s' end.
revert Hd Houtputaddrs_array Houtputaddrs_reg.
revert dependent s'; intro s'.
revert s s'.
revert dependent outputaddrs; intro outputaddrs.
revert outputaddrs output_types output_vals idxs.
induction outputaddrs as [|outputaddr outputaddrs IH], output_types as [|output_type output_types], output_vals as [|output_val output_vals], idxs as [|idx idxs]; try specialize (IH output_types output_vals idxs).
all: repeat first [ progress cbn [fst snd mapM List.map List.flat_map List.app List.combine option_map fold_right Crypto.Util.Option.bind Symbolic.dag_state Symbolic.symbolic_reg_state Symbolic.symbolic_mem_state Symbolic.symbolic_flag_state List.length] in * | progress cbv [Symbolic.ret] in * | progress intros | progress subst | progress inversion_ErrorT | progress inversion_prod | discriminate | solve [ eauto 10 ] | progress destruct_head'_prod | progress destruct_head'_ex | progress destruct_head'_and | progress specialize_by_assumption | rewrite Forall2_cons_cons_iff | set_evars; rewrite Forall_cons_iff; subst_evars | rewrite !app_assoc | progress cbv [Symbolic.bind ErrorT.bind] in * | progress inversion_list | progress inversion_nat_eq | progress specialize_by (first [ eapply Forall2_weaken | eapply Forall_impl ]; [ | multimatch goal with H : _ |- _ => exact H end ]; cbv beta; intros *; destruct_head' symbolic_state; cbn [Symbolic.dag_state Symbolic.symbolic_reg_state Symbolic.symbolic_mem_state Symbolic.symbolic_flag_state] in *; subst; break_innermost_match; cbv [eval_idx_Z] in *; now intuition (destruct_head'_ex; eauto)) | match goal with | [ H : Forall _ (_ :: _) |- _ ] => inversion H; clear H | [ H : Forall2 _ (_ :: _) _ |- _ ] => inversion H; clear H | [ H : Forall2 _ [] _ |- _ ] => inversion H; clear H | [ H : _ :: _ = _ :: _ |- _ ] => inversion H; clear H | [ IH : forall s s', mapM ?f ?ls s = Success (?v, s') -> _, H : mapM ?f ?ls _ = Success (?v, _) |- _ ] => specialize (IH _ _ H) | [ H : LoadArray _ _ _ = _ |- _ ] => eapply LoadArray_ok in H; [ | eassumption .. ] | [ H : Remove64 _ _ = _ |- _ ] => eapply Remove64_ok in H; [ | eassumption .. ] | [ H : GetReg _ _ = _ |- _ ] => eapply GetReg_ok in H; [ | (reflexivity + eassumption) .. ] | [ H : Permutation ?s _, H' : Forall _ ?s |- _ ] => rewrite H in H' | [ H : Forall _ (_ ++ _) |- _ ] => apply Forall_app in H end | break_innermost_match_hyps_step | progress break_match_hyps | apply conj; eauto; [] | progress destruct_head' symbolic_state ].
all: lazymatch goal with | [ |- context[Forall2 _ _ ((inr _, _, _) :: _)] ] => eexists (inr _ :: _) | [ |- context[Forall2 _ _ ((inl _, _, _) :: _)] ] => eexists (inl _ :: _) end.
all: repeat first [ rewrite Forall2_cons_cons_iff | match goal with | [ |- context[?x = ?y] ] => first [ is_evar x | is_evar y ]; progress unify x y | [ |- Permutation _ _ /\ _ ] => split | [ H : Permutation ?s _ |- Permutation ?s _ ] => rewrite H | [ H : Permutation ?s _ |- Permutation (_ :: ?s) _ ] => rewrite H | [ H : Permutation ?s _ |- Permutation (_ ++ ?s) _ ] => rewrite H | [ |- context[@Forall ?A ?P (?x :: ?xs)] ] => rewrite (@Forall_cons_iff A P x xs) | [ |- ?A /\ ?B ] => tryif (has_evar A; has_evar B) then fail else split | [ |- List.length ?A = List.length ?B ] => tryif (has_evar A; has_evar B) then fail else (saturate_lengths; congruence) | [ |- Forall (fun v => Forall (@?P v) (@?y v)) ?x ] => tryif first [ has_evar P | has_evar x | has_evar y ] then fail else (eapply Forall_impl; [ | eassumption ]; cbv beta) end | rewrite !List.app_assoc | progress cbn [List.combine flat_map List.app] | progress repeat rewrite <- ?and_assoc, <- (and_comm (Permutation _ _)); rewrite ?and_assoc | match goal with | [ |- Permutation _ _ ] => reflexivity end | solve [ cbv [eval_idx_Z] in *; eauto 10 ] | (rewrite -> ?and_assoc + rewrite <- ?and_assoc); apply conj; match goal with | [ |- ?G ] => tryif has_evar G then auto else eauto end; [] | match goal with | [ |- context[?A /\ ?B] ] => lazymatch A with | context[Forall2 _ _ _] => lazymatch B with | context[Forall2 _ _ _] => fail 1 end end | _ => idtac end; rewrite <- ?and_assoc, <- (and_comm (Forall2 _ _ _)), ?and_assoc | rewrite <- ?and_assoc, <- (and_comm (false = false)), ?and_assoc ].
all: repeat first [ progress intros | progress destruct_head'_and | progress subst | assumption | reflexivity | match goal with | [ |- ?A /\ ?B ] => tryif (has_evar A; has_evar B) then fail else split | [ |- Forall (fun v => Forall (@?P v) (@?y v)) ?x ] => tryif first [ has_evar P | has_evar x | has_evar y ] then fail else (eapply Forall_impl; [ | eassumption ]; cbv beta) | [ H : Permutation ?s _, H' : Forall _ ?s |- _ ] => rewrite H in H' | [ H : Forall _ (_ ++ _) |- _ ] => apply Forall_app in H | [ |- List.length _ = List.length _ ] => saturate_lengths; congruence | [ H : forall idx, ?x = Some idx -> _, H' : ?x = Some _ |- _ ] => specialize (H _ H') | [ H : ?x = Some _ |- context[?x] ] => rewrite H | [ |- exists v, Some ?x = Some v /\ _ ] => exists x end | rewrite !@Forall2_map_r_iff in * | eapply Forall2_weaken; [ | eassumption ]; cbv beta | rewrite !Z.land_ones in * by lia | rewrite Z.mod_mod in * by (clear; lia) | progress handle_eval_eval | match goal with | [ H : eval_idx_Z _ _ ?i ?v |- eval_idx_Z _ _ ?i ?v' ] => cut (v' = v); [ intros ->; eapply lift_eval_idx_Z_impl; [ | exact H ]; now eauto | ]; push_Zmod; pull_Zmod | [ |- _ <-> _ ] => split | [ H : context[(?x mod ?y)%Z] |- _ ] => unique assert (0 <= x mod y)%Z by now apply Z.mod_pos_bound; clear; lia | [ H : context[(?x mod ?y)%Z] |- _ ] => unique assert (x mod y < y)%Z by now apply Z.mod_pos_bound; clear; lia end | apply conj; eauto; [] | rewrite <- ?and_assoc, <- (and_comm (Forall2 _ _ _)), ?and_assoc | solve [ cbv [eval_idx_Z] in *; eauto 10 ] ].
Qed.