Timings for GroupAction.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-unimath.dev/./UniMath/Algebra/GroupAction.v.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-unimath.dev/./UniMath/Algebra/GroupAction.v.timing
(* -*- coding: utf-8 *) (** * Group actions *)
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.Propositions.
Require Import UniMath.MoreFoundations.Notations.
Require Import UniMath.MoreFoundations.Univalence.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.Groups.
Require Import UniMath.Combinatorics.OrderedSets.
Import UniMath.MoreFoundations.PartA.
(** ** Definitions *)
Definition action_op G (X:hSet) : Type := ∏ (g:G) (x:X), X.
Section A.
Context (G:gr) (X:hSet).
Definition ActionStructure : Type := ∑ (act_mult : action_op G X) (act_unit : ∏ x, act_mult (unel G) x = x), (* act_assoc : *) ∏ g h x, act_mult (op g h) x = act_mult g (act_mult h x).
Definition make act_mult act_unit act_assoc : ActionStructure := act_mult,, act_unit,, act_assoc.
Definition act_mult (x:ActionStructure) := pr1 x.
Definition act_unit (x:ActionStructure) := pr12 x.
Definition act_assoc (x:ActionStructure) := pr22 x.
End A.
Arguments act_mult {_ _} _ _ _.
Lemma isaset_ActionStructure (G:gr) (X:hSet) : isaset (ActionStructure G X).
Proof.
intros.
apply isaset_total2.
{
apply (impred 2); intro g.
apply impred; intro x.
apply setproperty.
}
intro op.
apply isaset_total2.
{
apply (impred 2); intro x.
apply hlevelntosn.
apply setproperty.
}
intro un.
apply (impred 2); intro g.
apply (impred 2); intro h.
apply (impred 2); intro x.
apply hlevelntosn.
apply setproperty.
Qed.
Definition Action (G:gr) := total2 (ActionStructure G).
Definition makeAction {G:gr} (X:hSet) (ac:ActionStructure G X) := X,,ac : Action G.
Definition ac_set {G:gr} (X:Action G) := pr1 X.
Coercion ac_set : Action >-> hSet.
Definition ac_type {G:gr} (X:Action G) := pr1hSet (ac_set X).
Definition ac_str {G:gr} (X:Action G) := pr2 X : ActionStructure G (ac_set X).
Definition ac_mult {G:gr} (X:Action G) := act_mult (pr2 X).
Declare Scope action_scope.
Delimit Scope action_scope with action.
Local Notation "g * x" := (ac_mult _ g x) : action_scope.
Local Open Scope action_scope.
Definition ac_assoc {G:gr} (X:Action G) := act_assoc _ _ (pr2 X) : ∏ g h x, (op g h)*x = g*(h*x).
Definition right_mult {G:gr} {X:Action G} (x:X) := λ g, g*x.
Definition left_mult {G:gr} {X:Action G} (g:G) := λ x:X, g*x.
Definition is_equivariant {G:gr} {X Y:Action G} (f:X->Y) : hProp := (∀ g x, f (g*x) = g*(f x))%logic.
Definition is_equivariant_isaprop {G:gr} {X Y:Action G} (f:X->Y) : isaprop (is_equivariant f).
Proof.
apply propproperty.
Qed.
(** The following fact is fundamental: it shows that our definition of [is_equivariant] captures all of the structure. The proof reduces to showing that if G acts on a set X in two ways, and the identity function is equivariant, then the two actions are equal. A similar fact will hold in other cases: groups, rings, monoids, etc. Refer to section 9.8 of the HoTT book, on the "structure identity principle", a term coined by Peter Aczel. *)
Local Open Scope transport.
Definition is_equivariant_identity {G:gr} {X Y:Action G} (p:ac_set X = ac_set Y) : p # ac_str X = ac_str Y ≃ is_equivariant (cast (maponpaths pr1hSet p)).
Proof.
revert X Y p; intros [X [Xm [Xu Xa]]] [Y [Ym [Yu Ya]]] ? .
(* should just apply hPropUnivalence at this point, as in Poset_univalence_prelim! *)
simpl in p.
destruct p; simpl.
unfold transportf; simpl.
simple refine (make_weq _ _).
{
intros p g x.
simpl in x.
simpl.
exact (eqtohomot (eqtohomot (maponpaths act_mult p) g) x).
}
use isweq_iso.
{
unfold cast; simpl.
intro i.
assert (p:Xm=Ym).
{
apply funextsec; intro g.
apply funextsec; intro x; simpl in x.
exact (i g x).
}
destruct p.
clear i.
assert (p:Xu=Yu).
{
apply funextsec; intro x; simpl in x.
apply setproperty.
}
destruct p.
assert (p:Xa=Ya).
{
apply funextsec; intro g.
apply funextsec; intro h.
apply funextsec; intro x.
apply setproperty.
}
destruct p.
apply idpath.
}
{
intro p.
apply isaset_ActionStructure.
}
{
intro is.
apply proofirrelevance.
apply impred; intros g.
apply impred; intros x.
apply setproperty.
}
Defined.
Definition is_equivariant_comp {G:gr} {X Y Z:Action G} (p:X->Y) (i:is_equivariant p) (q:Y->Z) (j:is_equivariant q) : is_equivariant (funcomp p q).
Proof.
intros.
intros g x.
exact (maponpaths q (i g x) @ j g (p x)).
Defined.
Definition ActionMap {G:gr} (X Y:Action G) := total2 (@is_equivariant _ X Y).
Definition underlyingFunction {G:gr} {X Y:Action G} (f:ActionMap X Y) := pr1 f.
Coercion underlyingFunction : ActionMap >-> Funclass.
Definition equivariance {G:gr} {X Y:Action G} (f:ActionMap X Y) : is_equivariant f := pr2 f.
Definition composeActionMap {G:gr} (X Y Z:Action G) (p:ActionMap X Y) (q:ActionMap Y Z) : ActionMap X Z.
Proof.
revert p q; intros [p i] [q j].
exists (funcomp p q).
apply is_equivariant_comp.
assumption.
assumption.
Defined.
Definition ActionIso {G:gr} (X Y:Action G) : Type.
Proof.
exact (∑ f:(ac_set X) ≃ (ac_set Y), is_equivariant f).
Defined.
Lemma ActionIso_isaset {G:gr} (X Y:Action G) : isaset (ActionIso X Y).
Proof.
apply (isofhlevelsninclb _ pr1).
{
apply isinclpr1; intro f.
apply propproperty.
}
apply isofhlevelsnweqtohlevelsn.
apply setproperty.
Defined.
Coercion underlyingIso {G:gr} {X Y:Action G} (e:ActionIso X Y) : X ≃ Y := pr1 e.
Lemma underlyingIso_incl {G:gr} {X Y:Action G} : isincl (underlyingIso : ActionIso X Y -> X ≃ Y).
Proof.
intros.
apply isinclpr1; intro f.
apply propproperty.
Defined.
Local Goal ∏ G (X Y:Action G) (i : ActionIso X Y) (x:X), Y.
intros.
exact (i x).
Qed.
Lemma underlyingIso_injectivity {G:gr} {X Y:Action G} (e f:ActionIso X Y) : (e = f) ≃ (underlyingIso e = underlyingIso f).
Proof.
intros.
apply weqonpathsincl.
apply underlyingIso_incl.
Defined.
Definition underlyingActionMap {G:gr} {X Y:Action G} (e:ActionIso X Y) : ActionMap X Y := pr1weq (pr1 e),, pr2 e.
Definition idActionIso {G:gr} (X:Action G) : ActionIso X X.
Proof.
intros.
exists (idweq _).
intros g x.
reflexivity.
Defined.
Definition composeActionIso {G:gr} {X Y Z:Action G} (e:ActionIso X Y) (f:ActionIso Y Z) : ActionIso X Z.
Proof.
revert e f; intros [e i] [f j].
exists (weqcomp e f).
destruct e as [e e'], f as [f f']; simpl.
apply is_equivariant_comp.
exact i.
exact j.
Defined.
Lemma composeActionIsoId {G:gr} {X Y:Action G} (f : ActionIso X Y) : composeActionIso (idActionIso X) f = f.
Proof.
apply subtypePath.
{
intros g.
apply propproperty.
}
apply subtypePath.
{
intros g.
apply isapropisweq.
}
reflexivity.
Defined.
Lemma composeActionIsoId' {G:gr} {X Y:Action G} (f : ActionIso X Y) : composeActionIso f (idActionIso Y) = f.
Proof.
apply subtypePath.
{
intros g.
apply propproperty.
}
apply subtypePath.
{
intros g.
apply isapropisweq.
}
reflexivity.
Defined.
Definition path_to_ActionIso {G:gr} {X Y:Action G} (e:X = Y) : ActionIso X Y.
Proof.
intros.
destruct e.
exact (idActionIso X).
Defined.
Definition castAction {G:gr} {X Y:Action G} (e:X = Y) : X -> Y.
Proof.
intros x.
exact (path_to_ActionIso e x).
Defined.
(** ** Applications of univalence *)
Definition Action_univalence_prelim {G:gr} {X Y:Action G} : (X = Y) ≃ (ActionIso X Y).
Proof.
intros.
simple refine (weqcomp (total2_paths_equiv (ActionStructure G) X Y) _).
simple refine (weqbandf _ _ _ _).
{
apply hSet_univalence.
}
simpl.
intro p.
simple refine (weqcomp (is_equivariant_identity p) _).
exact (eqweqmap (maponpaths (λ f, hProptoType (is_equivariant f)) (pr1_eqweqmap (maponpaths pr1hSet p)))).
Defined.
Definition Action_univalence_prelim_comp {G:gr} {X Y:Action G} (p:X = Y) : Action_univalence_prelim p = path_to_ActionIso p.
Proof.
intros.
destruct p.
apply (maponpaths (tpair _ _)).
apply funextsec; intro g.
apply funextsec; intro x.
apply setproperty.
Defined.
Lemma path_to_ActionIsweq_iso {G:gr} {X Y:Action G} : isweq (@path_to_ActionIso G X Y).
Proof.
intros.
exact (isweqhomot Action_univalence_prelim path_to_ActionIso Action_univalence_prelim_comp (pr2 Action_univalence_prelim)).
Qed.
Definition Action_univalence {G:gr} {X Y:Action G} : (X = Y) ≃ (ActionIso X Y).
Proof.
intros.
exists path_to_ActionIso.
apply path_to_ActionIsweq_iso.
Defined.
Definition Action_univalence_comp {G:gr} {X Y:Action G} (p:X = Y) : Action_univalence p = path_to_ActionIso p.
Proof.
reflexivity.
Defined.
Definition Action_univalence_inv {G:gr} {X Y:Action G} : (ActionIso X Y) ≃ (X=Y) := invweq Action_univalence.
Definition Action_univalence_inv_comp {G:gr} {X Y:Action G} (f:ActionIso X Y) : path_to_ActionIso (Action_univalence_inv f) = f.
Proof.
intros.
unfold Action_univalence_inv, Action_univalence.
apply (homotweqinvweq Action_univalence f).
Defined.
Definition Action_univalence_inv_comp_eval {G:gr} {X Y:Action G} (f:ActionIso X Y) (x:X) : castAction (Action_univalence_inv f) x = f x.
Proof.
intros.
exact (eqtohomot (maponpaths pr1weq (maponpaths underlyingIso (Action_univalence_inv_comp f))) x).
Defined.
(** ** Torsors *)
Definition is_torsor {G:gr} (X:Action G) := nonempty X × ∏ x:X, isweq (right_mult x).
Lemma is_torsor_isaprop {G:gr} (X:Action G) : isaprop (is_torsor X).
Proof.
intros.
apply isapropdirprod.
{
apply propproperty.
}
{
apply impred; intro x.
apply isapropisweq.
}
Qed.
Definition Torsor (G:gr) := total2 (@is_torsor G).
Coercion underlyingAction {G} (X:Torsor G) := pr1 X : Action G.
Definition is_torsor_prop {G} (X:Torsor G) := pr2 X.
Definition torsor_nonempty {G} (X:Torsor G) := pr1 (is_torsor_prop X).
Definition torsor_splitting {G} (X:Torsor G) := pr2 (is_torsor_prop X).
Definition torsor_mult_weq {G} (X:Torsor G) (x:X) := make_weq (right_mult x) (torsor_splitting X x) : G ≃ X.
Definition torsor_mult_weq' {G} (X:Torsor G) (g:G) : X ≃ X.
Proof.
exists (left_mult g).
use isweq_iso.
-
exact (left_mult (grinv G g)).
-
intros x.
unfold left_mult.
intermediate_path ((grinv G g * g)%multmonoid * x).
+
apply pathsinv0,act_assoc.
+
intermediate_path (unel G * x).
*
apply (maponpaths (right_mult x)).
apply grlinvax.
*
apply act_unit.
-
intros x.
unfold left_mult.
intermediate_path ((g * grinv G g)%multmonoid * x).
+
apply pathsinv0,act_assoc.
+
intermediate_path (unel G * x).
*
apply (maponpaths (right_mult x)).
apply grrinvax.
*
apply act_unit.
Defined.
Definition left_mult_Iso {G:abgr} (X:Torsor G) (g:G) : ActionIso X X.
Proof.
exists (torsor_mult_weq' X g).
intros h x.
change (g * (h * x) = h * (g * x)).
refine (! ac_assoc X g h x @ _ @ ac_assoc X h g x).
exact (maponpaths (right_mult x) (commax G g h)).
Defined.
Definition torsor_update_nonempty {G} (X:Torsor G) (x:nonempty X) : Torsor G.
Proof.
exact (underlyingAction X,,(x,,pr2(is_torsor_prop X))).
Defined.
Definition castTorsor {G} {T T':Torsor G} (q:T = T') : T -> T'.
Proof.
exact (castAction (maponpaths underlyingAction q)).
Defined.
Lemma castTorsor_transportf {G} {T T':Torsor G} (q:T = T') (t:T) : transportf (λ S, underlyingAction S) q t = castTorsor q t.
Proof.
now induction q.
Defined.
Lemma underlyingAction_incl {G:gr} : isincl (underlyingAction : Torsor G -> Action G).
Proof.
intros.
refine (isinclpr1 _ _); intro X.
apply is_torsor_isaprop.
Defined.
Lemma underlyingAction_injectivity {G:gr} {X Y:Torsor G} : (X = Y) ≃ (underlyingAction X = underlyingAction Y).
Proof.
intros.
apply weqonpathsincl.
apply underlyingAction_incl.
Defined.
Definition underlyingAction_injectivity_comp {G:gr} {X Y:Torsor G} (p:X = Y) : underlyingAction_injectivity p = maponpaths underlyingAction p.
Proof.
reflexivity.
Defined.
Definition underlyingAction_injectivity_comp' {G:gr} {X Y:Torsor G} : pr1weq (@underlyingAction_injectivity G X Y) = @maponpaths (Torsor G) (Action G) (@underlyingAction G) X Y.
Proof.
reflexivity.
Defined.
Definition underlyingAction_injectivity_inv_comp {G:gr} {X Y:Torsor G} (f:underlyingAction X = underlyingAction Y) : maponpaths underlyingAction (invmap underlyingAction_injectivity f) = f.
Proof.
intros.
apply (homotweqinvweq underlyingAction_injectivity f).
Defined.
Definition PointedTorsor (G:gr) := ∑ X:Torsor G, X.
Definition underlyingTorsor {G} (X:PointedTorsor G) := pr1 X : Torsor G.
Coercion underlyingTorsor : PointedTorsor >-> Torsor.
Definition underlyingPoint {G} (X:PointedTorsor G) := pr2 X : X.
Lemma is_quotient {G} (X:Torsor G) (y x:X) : ∃! g, g*x = y.
Proof.
intros.
exact (pr2 (is_torsor_prop X) x y).
Defined.
Definition quotient {G} (X:Torsor G) (y x:X) := pr1 (iscontrpr1 (is_quotient X y x)) : G.
Local Notation "y / x" := (quotient _ y x) : action_scope.
Lemma quotient_times {G} {X:Torsor G} (y x:X) : (y/x)*x = y.
Proof.
intros.
exact (pr2 (iscontrpr1 (is_quotient _ y x))).
Defined.
Lemma quotient_uniqueness {G} {X:Torsor G} (y x:X) (g:G) : g*x = y -> g = y/x.
Proof.
intros e.
exact (maponpaths pr1 (uniqueness (is_quotient _ y x) (g,,e))).
Defined.
Lemma quotient_mult {G} (X:Torsor G) (g:G) (x:X) : (g*x)/x = g.
Proof.
intros.
apply pathsinv0.
apply quotient_uniqueness.
reflexivity.
Defined.
Lemma quotient_1 {G} (X:Torsor G) (x:X) : x/x = 1%multmonoid.
Proof.
intros.
apply pathsinv0.
apply quotient_uniqueness.
apply act_unit.
Defined.
Lemma quotient_product {G} (X:Torsor G) (z y x:X) : op (z/y) (y/x) = z/x.
Proof.
intros.
apply quotient_uniqueness.
exact (ac_assoc _ _ _ _ @ maponpaths (left_mult (z/y)) (quotient_times y x) @ quotient_times z y).
Defined.
Lemma quotient_map {G} {X Y:Torsor G} (f : ActionMap X Y) (x x':X) : f x' / f x = x' / x.
Proof.
refine (! (quotient_uniqueness (f x') (f x) (x' / x) _)).
assert (p := equivariance f (x'/x) x).
refine (!p @ _); clear p.
apply maponpaths.
apply quotient_times.
Qed.
Lemma torsorMapIsIso {G} {X Y : Torsor G} (f : ActionMap X Y) : isweq f.
Proof.
apply (squash_to_prop (torsor_nonempty X)).
-
apply isapropisweq.
-
intros x.
set (y := f x).
set (f' := λ y', y' / y * x).
apply (isweq_iso f f').
+
intros x'.
unfold f', y.
assert (p := quotient_times x' x).
refine (_ @ p); clear p.
apply (maponpaths (λ g, g * x)).
apply quotient_map.
+
intros y'.
unfold f'.
assert (p := equivariance f (y'/y) x).
refine (p @ _); clear p.
fold y.
apply quotient_times.
Defined.
Definition torsorMap_to_torsorIso {G} {X Y : Torsor G} (f : ActionMap X Y) : ActionIso X Y.
Proof.
use tpair.
-
exists f.
apply torsorMapIsIso.
-
simpl.
apply equivariance.
Defined.
Definition trivialTorsor (G:gr) : Torsor G.
Proof.
intros.
exists (makeAction G (make G G op (lunax G) (assocax G))).
exact (hinhpr (unel G),, λ x, isweq_iso (λ g, op g x) (λ g, op g (grinv _ x)) (λ g, assocax _ g x (grinv _ x) @ maponpaths (op g) (grrinvax G x) @ runax _ g) (λ g, assocax _ g (grinv _ x) x @ maponpaths (op g) (grlinvax G x) @ runax _ g)).
Defined.
Definition toTrivialTorsor {G:gr} (g:G) : trivialTorsor G.
Proof.
exact g.
Defined.
Definition pointedTrivialTorsor (G:gr) : PointedTorsor G.
Proof.
intros.
exists (trivialTorsor G).
exact (unel G).
Defined.
Definition univ_function {G:gr} (X:Torsor G) (x:X) : trivialTorsor G -> X.
Proof.
apply right_mult.
assumption.
Defined.
Definition univ_function_pointed {G:gr} (X:Torsor G) (x:X) : univ_function X x (unel _) = x.
Proof.
intros.
apply act_unit.
Defined.
Definition univ_function_is_equivariant {G:gr} (X:Torsor G) (x:X) : is_equivariant (univ_function X x).
Proof.
intros.
intros g h.
apply act_assoc.
Defined.
Definition triviality_isomorphism {G:gr} (X:Torsor G) (x:X) : ActionIso (trivialTorsor G) X.
Proof.
intros.
exact (torsor_mult_weq X x,, univ_function_is_equivariant X x).
Defined.
Lemma triviality_isomorphism_compute (G:gr) : triviality_isomorphism (trivialTorsor G) (unel G) = idActionIso (trivialTorsor G).
Proof.
apply subtypePath_prop.
apply subtypePath.
{
intros X.
apply isapropisweq.
}
apply funextsec; intros g.
change (op g (unel _) = g).
apply runax.
Defined.
Definition trivialTorsor_weq (G:gr) (g:G) : (trivialTorsor G) ≃ (trivialTorsor G).
Proof.
intros.
exists (λ h, op h g).
apply (isweq_iso _ (λ h, op h (grinv G g))).
{
exact (λ h, assocax _ _ _ _ @ maponpaths (op _) (grrinvax _ _) @ runax _ _).
}
{
exact (λ h, assocax _ _ _ _ @ maponpaths (op _) (grlinvax _ _) @ runax _ _).
}
Defined.
Definition trivialTorsorAuto (G:gr) (g:G) : ActionIso (trivialTorsor G) (trivialTorsor G).
Proof.
intros.
exists (trivialTorsor_weq G g).
intros h x.
simpl.
exact (assocax _ h x g).
Defined.
Lemma pr1weq_injectivity {X Y} (f g:X ≃ Y) : (f = g) ≃ (pr1weq f = pr1weq g).
Proof.
intros.
apply weqonpathsincl.
apply isinclpr1weq.
Defined.
Definition trivialTorsorRightMultiplication (G:gr) : G ≃ ActionIso (trivialTorsor G) (trivialTorsor G).
Proof.
exists (trivialTorsorAuto G).
simple refine (isweq_iso _ _ _ _).
{
intro f.
exact (f (unel G)).
}
{
intro g; simpl.
exact (lunax _ g).
}
{
intro f; simpl.
apply (invweq (underlyingIso_injectivity _ _)); simpl.
apply (invweq (pr1weq_injectivity _ _)).
apply funextsec; intro g.
simpl.
exact ((! (pr2 f) g (unel G)) @ (maponpaths (pr1 f) (runax G g))).
}
Defined.
Definition autos_comp (G:gr) (g:G) : underlyingIso (trivialTorsorRightMultiplication G g) = trivialTorsor_weq G g.
Proof.
reflexivity.
(* don't change the proof *)
Defined.
Definition autos_comp_apply (G:gr) (g h:G) : (trivialTorsorRightMultiplication _ g) h = (h * g)%multmonoid.
Proof.
reflexivity.
(* don't change the proof *)
Defined.
Lemma trivialTorsorAuto_unit (G:gr) : trivialTorsorAuto G (unel _) = idActionIso _.
Proof.
intros.
simple refine (subtypePath _ _).
{
intro k.
apply is_equivariant_isaprop.
}
{
simple refine (subtypePath _ _).
{
intro; apply isapropisweq.
}
{
apply funextsec; intro x; simpl.
exact (runax G x).
}
}
Defined.
Lemma trivialTorsorAuto_mult (G:gr) (g h:G) : composeActionIso (trivialTorsorAuto G g) (trivialTorsorAuto G h) = (trivialTorsorAuto G (op g h)).
Proof.
intros.
simple refine (subtypePath _ _).
{
intro; apply is_equivariant_isaprop.
}
{
simple refine (subtypePath _ _).
{
intro; apply isapropisweq.
}
{
apply funextsec; intro x; simpl.
exact (assocax _ x g h).
}
}
Defined.
(** ** Applications of univalence *)
Definition torsor_univalence {G:gr} {X Y:Torsor G} : (X = Y) ≃ (ActionIso X Y).
Proof.
intros.
simple refine (weqcomp underlyingAction_injectivity _).
apply Action_univalence.
Defined.
Definition torsor_univalence_transport {G:gr} {X Y:Torsor G} (p:X=Y) (x:X) : torsor_univalence p x = transportf (λ X:Torsor G, X:Type) p x.
(* compare with castTorsor_transportf above *)
Proof.
now induction p.
Defined.
Corollary torsor_hlevel {G:gr} : isofhlevel 3 (Torsor G).
Proof.
intros X Y.
apply (isofhlevelweqb 2 torsor_univalence).
apply ActionIso_isaset.
Defined.
Definition torsor_univalence_comp {G:gr} {X Y:Torsor G} (p:X = Y) : torsor_univalence p = path_to_ActionIso (maponpaths underlyingAction p).
Proof.
reflexivity.
Defined.
Definition torsor_univalence_inv_comp_eval {G:gr} {X Y:Torsor G} (f:ActionIso X Y) (x:X) : castTorsor (invmap torsor_univalence f) x = f x.
Proof.
intros.
unfold torsor_univalence.
unfold castTorsor.
rewrite invmapweqcomp.
(* too slow *)
unfold weqcomp; simpl.
rewrite underlyingAction_injectivity_inv_comp.
apply Action_univalence_inv_comp_eval.
Defined.
Definition torsor_eqweq_to_path {G:gr} {X Y:Torsor G} : ActionIso X Y -> X = Y.
Proof.
intros f.
exact (invweq torsor_univalence f).
Defined.
Definition torsorMap_to_path {G:gr} {X Y:Torsor G} : ActionMap X Y -> X = Y.
Proof.
intros f.
apply (invweq torsor_univalence).
apply torsorMap_to_torsorIso.
exact f.
Defined.
Theorem TorsorIso_rect {G:gr} {X Y : Torsor G} (P : ActionIso X Y -> UU) : (∏ e : X = Y, P (torsor_univalence e)) -> ∏ f, P f.
Proof.
intros ih ?.
set (p := ih (invmap torsor_univalence f)).
set (h := homotweqinvweq torsor_univalence f).
exact (transportf P h p).
Defined.
Ltac torsor_induction f e := generalize f; apply TorsorIso_rect; intro e; clear f.
Theorem TorsorIso_rect' {G:gr} {X : Torsor G} (P : ∏ Y : Torsor G, ActionIso X Y -> Type) : P X (idActionIso X) -> ∏ (Y : Torsor G) (f:ActionIso X Y), P Y f.
Proof.
intros p ? ?.
torsor_induction f q.
induction q.
exact p.
Defined.
Ltac torsor_induction' f X := generalize f; generalize X; apply TorsorIso_rect'; clear f X.
Lemma torsor_univalence_id {G:gr} (X:Torsor G) : invmap torsor_univalence (idActionIso X) = idpath X.
(* upstream *)
Proof.
change (idActionIso X) with (torsor_univalence (idpath X)).
apply homotinvweqweq.
Defined.
Definition invUnivalenceCompose {G:gr} {X Y Z : Torsor G} (f : ActionIso X Y) (g : ActionIso Y Z) : invmap torsor_univalence f @ invmap torsor_univalence g = invmap torsor_univalence (composeActionIso f g).
Proof.
torsor_induction' g Z.
rewrite composeActionIsoId'.
rewrite torsor_univalence_id.
apply pathscomp0rid.
Defined.
Definition PointedActionIso {G:gr} (X Y:PointedTorsor G) := ∑ f:ActionIso X Y, f (underlyingPoint X) = underlyingPoint Y.
Definition pointed_triviality_isomorphism {G:gr} (X:PointedTorsor G) : PointedActionIso (pointedTrivialTorsor G) X.
Proof.
revert X; intros [X x].
exists (triviality_isomorphism X x).
simpl.
apply univ_function_pointed.
Defined.
Definition Pointedtorsor_univalence {G:gr} {X Y:PointedTorsor G} : (X = Y) ≃ (PointedActionIso X Y).
Proof.
intros.
simple refine (weqcomp (total2_paths_equiv _ X Y) _).
simple refine (weqbandf _ _ _ _).
{
intros.
exact (weqcomp (weqonpathsincl underlyingAction underlyingAction_incl X Y) Action_univalence).
}
destruct X as [X x], Y as [Y y]; simpl.
intro p.
destruct p; simpl.
exact (idweq _).
Defined.
Definition ClassifyingSpace G := pointedType (Torsor G) (trivialTorsor G).
Definition E := PointedTorsor.
Definition B := ClassifyingSpace.
Definition π {G:gr} := underlyingTorsor : E G -> B G.
Lemma isBaseConnected_BG (G:gr) : isBaseConnected (B G).
Proof.
intros X.
use (hinhfun _ (torsor_nonempty X)); intros x.
exact (torsor_eqweq_to_path (triviality_isomorphism X x)).
Defined.
Goal ∏ (G:gr), triviality_isomorphism (trivialTorsor G) (unel G) = idActionIso (trivialTorsor G).
Fail reflexivity.
Abort.
Goal ∏ (G:gr), isBaseConnected_BG G (trivialTorsor G) = hinhpr (idpath (trivialTorsor G)).
intros.
unfold isBaseConnected_BG, pr2.
change (pr1 (trivialTorsor G) : Type) with (G : Type).
change (torsor_nonempty (trivialTorsor G)) with (hinhpr (unel G)).
change (hinhpr (torsor_eqweq_to_path (triviality_isomorphism (trivialTorsor G) (unel G))) = hinhpr (idpath (trivialTorsor G))).
apply maponpaths.
Fail reflexivity.
Abort.
Lemma isConnected_BG (G:gr) : isConnected (B G).
Proof.
apply baseConnectedness.
apply isBaseConnected_BG.
Defined.
Lemma iscontr_EG (G:gr) : iscontr (E G).
Proof.
intros.
exists (pointedTrivialTorsor G).
intros [X x].
apply pathsinv0.
apply (invweq Pointedtorsor_univalence).
apply pointed_triviality_isomorphism.
Defined.
Theorem loopsBG (G:gr) : G ≃ Ω (B G).
Proof.
intros.
simple refine (weqcomp _ (invweq torsor_univalence)).
apply trivialTorsorRightMultiplication.
Defined.
Definition loopsBG_comp (G:gr) (g:G) : loopsBG G g = invmap torsor_univalence (trivialTorsorAuto G g).
Proof.
reflexivity.
Defined.
Definition loopsBG_comp' {G:gr} (p : Ω (B G)) : invmap (loopsBG G) p = path_to_ActionIso (maponpaths underlyingAction p) (unel G).
Proof.
reflexivity.
Defined.
Definition loopsBG_comp_2 (G:gr) (g h:G) : castTorsor (loopsBG G g) h = (h*g)%multmonoid.
Proof.
exact (torsor_univalence_inv_comp_eval (trivialTorsorAuto G g) h).
Defined.
(** Theorem [loopsBG] also follows from the Rezk Completion theorem of the CategoryTheory package. To see that, regard G as a category with one object. Consider a merely representable functor F : G^op -> Set. Let X be F of the object *. Apply F to the arrows to get an action of G on X. Try to prove that X is a torsor. Since being a torsor is a mere property, we may assume F is actually representable. There is only one object *, so F is isomorphic to h_*. Apply h_* to * and we get Hom(*,*), which is G, regarded as a G-set. That's a torsor. So the Rezk completion RCG is equivalent to BG, the type of G-torsors. Now the theorem also says there is an equivalence G -> RCG. So RCG is connected and its loop space is G. A formalization of that argument should be added eventually. *) (* Local Variables: compile-command: "make -C ../.. UniMath/CategoryTheory/RepresentableFunctors/GroupAction.vo" End: *)