Timings for Compiler.v

  1. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.OLD/ocaml-OLD/.opam-switch/build/coq-fiat-crypto-with-bedrock.dev/./src/Fancy/Compiler.v.timing
  2. /home/gitlab-runner/builds/v6HyzL39/0/coq/coq/_bench/opam.NEW/ocaml-NEW/.opam-switch/build/coq-fiat-crypto-with-bedrock.dev/./src/Fancy/Compiler.v.timing
Require Import Coq.ZArith.ZArith Coq.micromega.Lia.
Require Import Coq.Lists.List.
Import ListNotations.
Require Import Rewriter.Language.Wf.
Import Language.Wf.Compilers.
Require Import Rewriter.Language.Inversion.
Import Language.Inversion.Compilers.
Require Import Crypto.Language.API.
Import Language.API.Compilers.
Import Compilers.API.
Require Import Crypto.CastLemmas.
Require Import Crypto.Fancy.Spec.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tuple.
Require Import Crypto.Util.ZRange.
Require Import Crypto.Util.ZUtil.Zselect.
Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.ZUtil.AddModulo.
Require Import Crypto.Util.ZUtil.Definitions.
Require Import Crypto.Util.ZUtil.Div.
Require Import Crypto.Util.ZUtil.Notations.
Require Import Crypto.Util.Notations.
Local Open Scope Z_scope.
(* TODO: organize this file *)
Section of_prefancy.
(* We would like to write [Local Notation cexpr := (@API.expr).] but we can't, in part because implicit status doesn't work through nested notations, and in part because COQBUG(https://github.com/coq/coq/issues/10803) *) (* Set Printing All. Print API.expr. *)
Local Notation cexpr := (@expr.expr (Language.Compilers.base.type.type Compilers.base) IdentifiersBasicGENERATED.Compilers.ident).
Local Notation tZ := (base.type.type_base base.type.Z).
Local Notation tzrange := (base.type.type_base base.type.zrange).
Local Notation cstZ r := (expr.App (expr.Ident ident.Z_cast) (expr.Ident (@ident.Literal base.type.zrange r%zrange))).
Local Notation cstZZ r1 r2 := (expr.App (expr.Ident ident.Z_cast2) (expr.App (expr.App (expr.Ident ident.pair) (expr.Ident (@ident.Literal base.type.zrange r1%zrange))) (expr.Ident (@ident.Literal base.type.zrange r2%zrange)))).
Local Notation LetInAppIdentZ S D r eidc x f := (expr.LetIn (A:=type.base tZ) (B:=type.base D) (expr.App (s:=type.base tZ) (d:=type.base tZ) (cstZ r) (expr.App (s:=type.base S) (d:=type.base tZ) eidc x)) f).
Local Notation LetInAppIdentZZ S D r1 r2 eidc x f := (expr.LetIn (A:=type.base (base.type.prod tZ tZ)) (B:=type.base D) (expr.App (s:=type.base (base.type.prod tZ tZ)) (d:=type.base (base.type.prod tZ tZ)) (cstZZ r1 r2) (expr.App (s:=type.base S) (d:=type.base (base.type.prod tZ tZ)) eidc x)) f).
Local Notation pair_LiteralZ B v e := (expr.App (s:=type.base B) (expr.App (expr.Ident (@ident.pair _ _)) (expr.Ident (ident.Literal (t:=base.type.Z) v))) e).
Local Notation pair_LiteralZZ B v1 v2 e := (expr.App (s:=type.base B) (expr.App (expr.Ident (@ident.pair _ _)) (expr.App (expr.App (expr.Ident (@ident.pair _ _)) (expr.Ident (ident.Literal (t:=base.type.Z) v1))) (expr.Ident (ident.Literal (t:=base.type.Z) v2)))) e).
Context (name : Type) (name_succ : name -> name) (error : name) (consts : Z -> option name).
Fixpoint base_var (t : base.type) : Type := match t with | tZ => name | base.type.prod a b => base_var a * base_var b | _ => unit end.
Fixpoint var (t : type.type base.type) : Type := match t with | type.base t => base_var t | type.arrow s d => var s -> var d end.
Fixpoint base_error {t} : base_var t := match t with | tZ => error | base.type.prod A B => (@base_error A, @base_error B) | _ => tt end.
Fixpoint make_error {t} : var t := match t with | type.base _ => base_error | type.arrow s d => fun _ => @make_error d end.
Fixpoint of_prefancy_scalar {t} (s : @cexpr var t) : var t := match s in expr.expr t return var t with | Compilers.expr.Var t v => v | expr.App s d f x => @of_prefancy_scalar _ f (@of_prefancy_scalar _ x) | expr.Ident t idc => match idc in ident.ident t return var t with | ident.Literal base.type.Z v => match consts v with | Some n => n | None => error end | ident.pair A B => fun a b => (a, b)%core | ident.fst A B => fun v => fst v | ident.snd A B => fun v => snd v | ident.Z_cast => fun r v => v | ident.Z_cast2 => fun r v => v | ident.Z_land => fun x y => x | _ => make_error end | expr.Abs s d f => make_error | expr.LetIn A B x f => make_error end%expr_pat%etype.
(* Note : some argument orders are reversed for MUL128LU, MUL128UL, SELC, SELM, and SELL *)
Definition of_prefancy_ident {s d : base.type} (idc : ident.ident (s -> d)) : @cexpr var s -> option {i : instruction & tuple name i.(num_source_regs) } := match idc in ident.ident t return match t return Type with | type.arrow (type.base s) (type.base d) => @cexpr var s | _ => unit end -> option {i : instruction & tuple name i.(num_source_regs) } with | ident.fancy_selc => fun args : @cexpr var (tZ * tZ * tZ) => Some (existT _ SELC (of_prefancy_scalar ((#ident.snd @ args), (#ident.snd @ (#ident.fst @ args))))) | ident.fancy_sell => fun args : @cexpr var (tZ * tZ * tZ) => Some (existT _ SELL (of_prefancy_scalar ((#ident.snd @ args), (#ident.snd @ (#ident.fst @ args))))) | ident.fancy_addm => fun args : @cexpr var (tZ * tZ * tZ) => Some (existT _ ADDM (of_prefancy_scalar args)) | ident.fancy_mulll => fun args : @cexpr var (tZ * (tZ * tZ)) => match args with | pair_LiteralZ (tZ * tZ) log2wordmax args => if Z.eqb log2wordmax 256 then Some (existT _ MUL128LL (of_prefancy_scalar args)) else None | _ => None end | ident.fancy_mullh => fun args : @cexpr var (tZ * (tZ * tZ)) => match args with | pair_LiteralZ (tZ * tZ) log2wordmax args => if Z.eqb log2wordmax 256 then Some (existT _ MUL128LU (of_prefancy_scalar ((#ident.snd @ args), (#ident.fst @ args)))) else None | _ => None end | ident.fancy_mulhl => fun args : @cexpr var (tZ * (tZ * tZ)) => match args with | pair_LiteralZ (tZ * tZ) log2wordmax args => if Z.eqb log2wordmax 256 then Some (existT _ MUL128UL (of_prefancy_scalar ((#ident.snd @ args), (#ident.fst @ args)))) else None | _ => None end | ident.fancy_mulhh => fun args : @cexpr var (tZ * (tZ * tZ)) => match args with | pair_LiteralZ (tZ * tZ) log2wordmax args => if Z.eqb log2wordmax 256 then Some (existT _ MUL128UU (of_prefancy_scalar args)) else None | _ => None end | ident.fancy_selm => fun args : @cexpr var (tZ * (tZ * tZ * tZ)) => match args with | pair_LiteralZ (tZ * tZ * tZ) log2wordmax args => if Z.eqb log2wordmax 256 then Some (existT _ SELM (of_prefancy_scalar ((#ident.snd @ args), (#ident.snd @ (#ident.fst @ args))))) else None | _ => None end | ident.fancy_add => fun args : @cexpr var ((tZ * tZ) * (tZ * tZ)) => match args with | pair_LiteralZZ (tZ * tZ) log2wordmax imm args => if Z.eqb log2wordmax 256 then Some (existT _ (ADD imm) (of_prefancy_scalar args)) else None | _ => None end | ident.fancy_addc => fun args : @cexpr var ((tZ * tZ) * (tZ * tZ * tZ)) => match args with | pair_LiteralZZ (tZ * tZ * tZ) log2wordmax imm args => if Z.eqb log2wordmax 256 then Some (existT _ (ADDC imm) (of_prefancy_scalar ((#ident.snd @ (#ident.fst @ args)), (#ident.snd @ args)))) else None | _ => None end | ident.fancy_sub => fun args : @cexpr var ((tZ * tZ) * (tZ * tZ)) => match args with | pair_LiteralZZ (tZ * tZ) log2wordmax imm args => if Z.eqb log2wordmax 256 then Some (existT _ (SUB imm) (of_prefancy_scalar args)) else None | _ => None end | ident.fancy_subb => fun args : @cexpr var ((tZ * tZ) * (tZ * tZ * tZ)) => match args with | pair_LiteralZZ (tZ * tZ * tZ) log2wordmax imm args => if Z.eqb log2wordmax 256 then Some (existT _ (SUBC imm) (of_prefancy_scalar ((#ident.snd @ (#ident.fst @ args)), (#ident.snd @ args)))) else None | _ => None end | ident.fancy_rshi => fun args : @cexpr var ((tZ * tZ) * (tZ * tZ)) => match args with | pair_LiteralZZ (tZ * tZ) log2wordmax imm args => if Z.eqb log2wordmax 256 then Some (existT _ (RSHI imm) (of_prefancy_scalar args)) else None | _ => None end | _ => fun _ => None end%option.
Local Notation "x <- y ; f" := (match y with Some x => f | None => Ret error end).
Definition of_prefancy_step (of_prefancy : forall (next_name : name) {t} (e : @cexpr var t), @expr name) (next_name : name) {t} (e : @cexpr var t) : @expr name := let default _ := (e' <- type.try_transport (@cexpr var) t tZ e; Ret (of_prefancy_scalar e')) in match e with | LetInAppIdentZ s d r eidc x f => idc <- invert_expr.invert_Ident eidc; instr_args <- @of_prefancy_ident s tZ idc x; let i : instruction := projT1 instr_args in let args : tuple name i.(num_source_regs) := projT2 instr_args in Instr i next_name args (@of_prefancy (name_succ next_name) _ (f next_name)) | LetInAppIdentZZ s d r1 r2 eidc x f => idc <- invert_expr.invert_Ident eidc; instr_args <- @of_prefancy_ident s (tZ * tZ) idc x; let i : instruction := projT1 instr_args in let args : tuple name i.(num_source_regs) := projT2 instr_args in Instr i next_name args (@of_prefancy (name_succ next_name) _ (f (next_name, next_name))) (* the second argument is for the carry, and it will not be read from directly. *) | _ => default tt end.
Fixpoint of_prefancy (next_name : name) {t} (e : @cexpr var t) : @expr name := @of_prefancy_step of_prefancy next_name t e.
Section Proofs.
Context (name_eqb : name -> name -> bool).
Context (name_lt : name -> name -> Prop) (name_lt_trans : forall n1 n2 n3, name_lt n1 n2 -> name_lt n2 n3 -> name_lt n1 n3) (name_lt_irr : forall n, ~ name_lt n n) (name_lt_succ : forall n, name_lt n (name_succ n)) (name_eqb_eq : forall n1 n2, name_eqb n1 n2 = true -> n1 = n2) (name_eqb_neq : forall n1 n2, name_eqb n1 n2 = false -> n1 <> n2).
Local Notation wordmax := (2^256).
Local Notation interp := (interp name_eqb wordmax cc_spec).
Local Notation uint256 := r[0~>wordmax-1]%zrange.
Local Notation uint128 := r[0~>(2 ^ (Z.log2 wordmax / 2) - 1)]%zrange.
Local Notation "'existZ' x" := (existT _ (type.base tZ) x) (at level 200).
Local Notation "'existZZ' x" := (existT _ (type.base (tZ * tZ)%etype) x) (at level 200).
Local Notation cinterp := API.interp.
Definition interp_if_Z {t} (e : cexpr t) : option Z := option_map (API.interp (t:=tZ)) (type.try_transport _ _ tZ e).
Lemma interp_if_Z_Some {t} e r : @interp_if_Z t e = Some r -> exists e', (type.try_transport _ _ tZ e) = Some e' /\ API.interp (t:=tZ) e' = r.
Proof using Type.
clear.
cbv [interp_if_Z option_map].
break_match; inversion 1; intros.
subst; eexists.
tauto.
Qed.
Inductive valid_scalar : @cexpr var tZ -> Prop := | valid_scalar_literal : forall v n, consts v = Some n -> valid_scalar (expr.Ident (@ident.Literal base.type.Z v)) | valid_scalar_Var : forall v, valid_scalar (expr.App (cstZ uint256) (expr.Var v)) | valid_scalar_fst : forall v r2, valid_scalar (expr.App (cstZ uint256) (expr.App (expr.Ident (@ident.fst tZ tZ)) (expr.App (cstZZ uint256 r2) (expr.Var v)))) .
Inductive valid_carry : @cexpr var tZ -> Prop := | valid_carry_0 : consts 0 <> None -> valid_carry (expr.Ident (@ident.Literal base.type.Z 0)) | valid_carry_1 : consts 1 <> None -> valid_carry (expr.Ident (@ident.Literal base.type.Z 1)) | valid_carry_snd : forall v r2, valid_carry (expr.App (cstZ r[0~>1]) (expr.App (expr.Ident (@ident.snd tZ tZ)) (expr.App (cstZZ r2 r[0~>1]) (expr.Var v)))) .
Definition interp_base (ctx : name -> Z) (cctx : name -> bool) {t} : base_var t -> base.interp t := match t as t0 return base_var t0 -> base.interp t0 with | tZ => fun n => ctx n | (tZ * tZ)%etype => fun v => (ctx (fst v), Z.b2z (cctx (snd v))) | (_a * _b)%etype => fun _ => DefaultValue.type.base.default | _ => fun _ : unit => DefaultValue.type.base.default end.
Definition new_write {d} : var d -> name := match d with | type.base tZ => fun r => r | type.base (tZ * tZ)%etype => fst | _ => fun _ => error end.
Definition new_cc_to_name (old_cc_to_name : CC.code -> name) (i : instruction) {d} (new_r : var d) (x : CC.code) : name := if (in_dec CC.code_dec x (writes_conditions i)) then new_write new_r else old_cc_to_name x.
Inductive valid_ident : forall {s d}, (CC.code -> name) -> (* last variables that wrote to each flag *) (var d -> CC.code -> name) -> (* new last variables that wrote to each flag *) ident.ident (s->d) -> @cexpr var s -> Prop := | valid_fancy_add : forall r imm x y, valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r (ADD imm)) ident.fancy_add ((##256, ##imm), (x, y))%expr | valid_fancy_addc : forall r imm c x y, (of_prefancy_scalar (t:= tZ) c = r CC.C) -> valid_carry c -> valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r (ADDC imm)) ident.fancy_addc ((##256, ##imm), (c, x, y))%expr | valid_fancy_sub : forall r imm x y, valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r (SUB imm)) ident.fancy_sub ((##256, ##imm), (x, y))%expr | valid_fancy_subb : forall r imm c x y, (of_prefancy_scalar (t:= tZ) c = r CC.C) -> valid_carry c -> valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r (SUBC imm)) ident.fancy_subb ((##256, ##imm), (c, x, y))%expr | valid_fancy_mulll : forall r x y, valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r MUL128LL) ident.fancy_mulll ((##256), (x, y))%expr | valid_fancy_mullh : forall r x y, valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r MUL128LU) ident.fancy_mullh ((##256), (x, y))%expr | valid_fancy_mulhl : forall r x y, valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r MUL128UL) ident.fancy_mulhl ((##256), (x, y))%expr | valid_fancy_mulhh : forall r x y, valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r MUL128UU) ident.fancy_mulhh ((##256), (x, y))%expr | valid_fancy_rshi : forall r imm x y, valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r (RSHI imm)) ident.fancy_rshi ((##256, ##imm), (x, y))%expr | valid_fancy_selc : forall r c x y, (of_prefancy_scalar (t:= tZ) c = r CC.C) -> valid_carry c -> valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r SELC) ident.fancy_selc (c, x, y)%expr | valid_fancy_selm : forall r c x y, (of_prefancy_scalar (t:= tZ) c = r CC.M) -> valid_scalar c -> valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r SELM) ident.fancy_selm ((##256), (c, x, y))%expr | valid_fancy_sell : forall r c x y, (of_prefancy_scalar (t:= tZ) c = r CC.L) -> valid_scalar c -> valid_scalar x -> valid_scalar y -> valid_ident r (new_cc_to_name r SELL) ident.fancy_sell (c, x, y)%expr | valid_fancy_addm : forall r x y m, valid_scalar x -> valid_scalar y -> valid_scalar m -> valid_ident r (new_cc_to_name r ADDM) ident.fancy_addm (x, y, m)%expr .
Inductive valid_expr : forall t, (CC.code -> name) -> (* the last variables that wrote to each flag *) @cexpr var t -> Prop := | valid_LetInZ_loosen : forall s d idc r rf x f u ia, valid_ident r rf idc x -> 0 < u < wordmax -> (forall x, valid_expr _ (rf x) (f x)) -> of_prefancy_ident idc x = Some ia -> (forall cc ctx, (forall n v, consts v = Some n -> ctx n = v) -> (forall n, ctx n mod wordmax = ctx n) -> let args := Tuple.map ctx (projT2 ia) in spec (projT1 ia) args cc mod wordmax = spec (projT1 ia) args cc mod (u+1)) -> valid_expr _ r (LetInAppIdentZ s d r[0~>u] (expr.Ident idc) x f) | valid_LetInZ : forall s d idc r rf x f, valid_ident r rf idc x -> (forall x, valid_expr _ (rf x) (f x)) -> valid_expr _ r (LetInAppIdentZ s d uint256 (expr.Ident idc) x f) | valid_LetInZZ : forall s d idc r rf x f, valid_ident r rf idc x -> (forall x : var (type.base (tZ * tZ)%etype), fst x = snd x -> valid_expr _ (rf x) (f x)) -> valid_expr _ r (LetInAppIdentZZ s d uint256 r[0~>1] (expr.Ident idc) x f) | valid_Ret : forall r x, valid_scalar x -> valid_expr _ r x .
Lemma wordmax_nonneg : 0 <= wordmax.
Proof using Type.
cbv; congruence.
Qed.
Lemma of_prefancy_scalar_correct' (e1 : @cexpr var (type.base tZ)) (e2 : cexpr (type.base tZ)) G (ctx : name -> Z) (cctx : name -> bool) : valid_scalar e1 -> API.wf G e1 e2 -> (forall n v, consts v = Some n -> In (existZ (n, v)) G) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> (forall v1 v2, In (existZ (v1, v2)) G -> ctx v1 = v2) -> (* implied by above *) (forall n, ctx n mod wordmax = ctx n) -> (forall v1 v2, In (existZZ (v1, v2)) G -> ctx (fst v1) = fst v2) -> (forall v1 v2, In (existZZ (v1, v2)) G -> Z.b2z (cctx (snd v1)) = snd v2) -> ctx (of_prefancy_scalar e1) = cinterp e2.
Proof using Type.
inversion 1; inversion 1; cbv [interp_if_Z option_map]; cbn [of_prefancy_scalar interp_base]; intros.
all: repeat first [ progress subst | exfalso; assumption | progress inversion_sigma | progress inversion_option | progress inversion_prod | progress destruct_head'_sig | progress destruct_head'_and | progress inversion_type | progress cbn [fst snd upper lower fst snd eq_rect projT1 projT2 eq_rect type.decode f_equal f_equal2] in * | progress cbn [expr.interp ident.interp type.interp base.interp base.base_interp] in * | progress cbv [ident.cast2 ident.literal] in * | progress destruct_head'_prod | progress expr.inversion_expr | progress expr.inversion_wf_one_constr | progress expr.invert_subst | break_innermost_match_hyps_step | progress break_innermost_match | match goal with H : context [_ = cinterp _] |- context [cinterp _] => rewrite <-H by eauto; try reflexivity end | solve [eauto using (f_equal2 pair), cast_oor_id, wordmax_nonneg] | rewrite ident.cast_out_of_bounds_simple_0_mod | rewrite Z.mod_mod by lia | rewrite cast_oor_mod by (cbv; congruence) | lia | match goal with H : context[ ?x mod _ = ?x ] |- _ => rewrite H end | match goal with | H : context [In _ _ -> _ = _] |- _ => erewrite H by eauto end | match goal with | H : forall v1 v2, In _ _ -> ?ctx v1 = v2 |- ?x = ?x mod ?m => replace m with wordmax by ring; erewrite <-(H _ x) by eauto; solve [eauto] end | match goal with | H : forall v1 v2, In _ _ -> ?ctx (fst v1) = fst v2, H' : In (existZZ (_,(?x,?y))) _ |- ?x = ?x mod ?m => replace m with wordmax by ring; specialize (H _ _ H'); cbn [fst] in H; rewrite <-H; solve [eauto] end ].
Qed.
Lemma of_prefancy_scalar_correct (e1 : @cexpr var (type.base tZ)) (e2 : cexpr (type.base tZ)) G (ctx : name -> Z) cc : valid_scalar e1 -> API.wf G e1 e2 -> (forall n v, consts v = Some n -> In (existZ (n, v)) G) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cc v1 = v2) -> (forall n, ctx n mod wordmax = ctx n) -> ctx (of_prefancy_scalar e1) = cinterp e2.
Proof using Type.
intros; match goal with H : context [interp_base _ _ _ = _] |- _ => pose proof (H tZ); pose proof (H (tZ * tZ)%etype); cbn [interp_base] in * end.
eapply of_prefancy_scalar_correct'; eauto; match goal with | H : forall _ _, In _ _ -> (_, _) = _ |- _ => let v1 := fresh "v" in let v2 := fresh "v" in intros v1 v2 ?; rewrite <-(H v1 v2) by auto end; reflexivity.
Qed.
Lemma of_prefancy_ident_Some_gen {s d} idc r rf x: @valid_ident s d r rf idc x -> match s, d return ident (s -> d) -> cexpr s -> Prop with | type.base s, type.base d => fun idc x => of_prefancy_ident idc x <> None | _, _ => fun idc x => False end idc x.
Proof using Type.
destruct 1; intros; repeat first [ progress HProp.eliminate_hprop_eq | progress subst | progress cbn [GallinaReify.base.reify ident.ident_Literal ident.buildIdent] in * | progress cbn [projT1 projT2 eq_rect of_prefancy_ident option_map] in * | progress cbv [ident.literal] in * | progress inversion_sigma | progress Z.ltb_to_lt | progress break_innermost_match | congruence ].
Qed.
Lemma of_prefancy_ident_Some {s d} idc r rf x: @valid_ident (type.base s) (type.base d) r rf idc x -> of_prefancy_ident idc x <> None.
Proof using Type.
exact (@of_prefancy_ident_Some_gen _ _ idc r rf x).
Qed.
Ltac name_eqb_to_eq := repeat match goal with | H : name_eqb _ _ = true |- _ => apply name_eqb_eq in H | H : name_eqb _ _ = false |- _ => apply name_eqb_neq in H end.
Ltac inversion_of_prefancy_ident := match goal with | H : of_prefancy_ident _ _ = None |- _ => eapply of_prefancy_ident_Some in H; [ contradiction | eassumption] end.
Local Ltac hammer := repeat first [ progress subst | progress inversion_sigma | progress inversion_option | progress inversion_of_prefancy_ident | progress inversion_prod | progress cbv [id] | progress cbn [eq_rect projT1 projT2 expr.interp ident.interp interp_base Coercions.base Coercions.type_base interp interp_if_Z option_map] in * | progress cbv [ident.cast2 ident.literal] in * | progress ident.fancy.cbv_fancy_in_all | progress cbn [invert_expr.invert_Ident] in * (* N.B. Must be above [break_innermost_match] for proofs below to work *) | progress Language.Inversion.Compilers.type_beq_to_eq | progress name_eqb_to_eq | progress Language.Inversion.Compilers.rewrite_type_transport_correct | progress HProp.eliminate_hprop_eq | progress break_innermost_match_hyps | progress break_innermost_match | progress inversion_type | progress expr.invert_subst | progress Language.Inversion.Compilers.expr.inversion_expr | solve [auto] | contradiction ].
Ltac prove_Ret := repeat match goal with | H : valid_scalar (expr.LetIn _ _) |- _ => inversion H | _ => progress cbn [id of_prefancy of_prefancy_step of_prefancy_scalar] | _ => progress hammer | H : valid_scalar (expr.Ident _) |- _ => inversion H; clear H | |- _ = cinterp ?f (cinterp ?x) => transitivity (cinterp (f @ x)%expr); [ | reflexivity ]; erewrite <-of_prefancy_scalar_correct by (try reflexivity; eassumption) end.
Lemma cast_mod u v : 0 <= u -> ident.cast r[0~>u] v = v mod (u + 1).
Proof using Type.
apply ident.cast_out_of_bounds_simple_0_mod.
Qed.
Lemma cc_spec_c v : Z.b2z (cc_spec CC.C v) = (v / wordmax) mod 2.
Proof using Type.
cbv [cc_spec]; apply Z.testbit_spec'.
lia.
Qed.
Lemma cc_m_zselect x z nz : x mod wordmax = x -> (if (if cc_spec CC.M x then 1 else 0) =? 1 then nz else z) = Z.zselect (x >> 255) z nz.
Proof using Type.
intro Hx_small.
transitivity (if (Z.b2z (cc_spec CC.M x) =? 1) then nz else z); [ reflexivity | ].
cbv [cc_spec Z.zselect].
rewrite Z.testbit_spec', Z.shiftr_div_pow2 by lia.
rewrite <-Hx_small.
rewrite Z.div_between_0_if by (try replace (2 * (2 ^ 255)) with wordmax by reflexivity; auto with zarith).
break_innermost_match; Z.ltb_to_lt; try rewrite Z.mod_small in * by lia; congruence.
Qed.
Lemma cc_l_zselect x z nz : (if (if cc_spec CC.L x then 1 else 0) =? 1 then nz else z) = Z.zselect (x &' 1) z nz.
Proof using Type.
transitivity (if (Z.b2z (cc_spec CC.L x) =? 1) then nz else z); [ reflexivity | ].
transitivity (Z.zselect (x &' Z.ones 1) z nz); [ | reflexivity ].
cbv [cc_spec Z.zselect].
rewrite Z.testbit_spec', Z.land_ones by lia.
autorewrite with zsimplify_fast.
rewrite Zmod_even.
break_innermost_match; Z.ltb_to_lt; congruence.
Qed.
Lemma b2z_range b : 0<= Z.b2z b < 2.
Proof using Type.
cbv [Z.b2z].
break_match; lia.
Qed.
Lemma of_prefancy_scalar_carry (c : @cexpr var (type.base tZ)) (e : cexpr (type.base tZ)) G (ctx : name -> Z) cctx : valid_carry c -> API.wf G c e -> (forall n0, consts 0 = Some n0 -> cctx n0 = false) -> (forall n1, consts 1 = Some n1 -> cctx n1 = true) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> Z.b2z (cctx (of_prefancy_scalar c)) = cinterp e.
Proof using Type.
destruct 1; intros; hammer; cbn; repeat match goal with | H : context [ _ = false] |- Z.b2z _ = 0 => rewrite H; reflexivity | H : context [ _ = true] |- Z.b2z _ = 1 => rewrite H; reflexivity | _ => progress Compilers.expr.inversion_wf_one_constr | _ => progress cbn [fst snd] | _ => progress destruct_head'_sig | _ => progress destruct_head'_and | _ => progress hammer | _ => progress Language.Inversion.Compilers.expr.invert_subst | _ => rewrite cast_mod by (cbv; congruence) | _ => rewrite Z.mod_mod by lia | _ => rewrite Z.mod_small by apply b2z_range | H : (forall _ _ _, In _ _ -> interp_base _ _ _ = _), H' : In (existZZ (?v, _)) _ |- context [cctx (snd ?v)] => specialize (H _ _ _ H'); cbn in H end.
Qed.
Ltac hammer_wf := repeat first [ progress subst | progress cbn [eq_rect fst snd projT1 projT2] in * | progress destruct_head'_False | progress expr.inversion_wf_one_constr | progress expr.invert_subst | progress destruct_head'_and | progress destruct_head'_sig | break_innermost_match_hyps_step ].
Ltac simplify_ident := repeat match goal with | _ => progress inversion_option | _ => progress hammer_wf | _ => progress intros | _ => progress cbn [fst snd of_prefancy_ident] in * | H : upper _ = _ |- _ => rewrite H | _ => rewrite cc_spec_c by auto | _ => rewrite cast_mod by (cbv; congruence) | H : ?P, H' : ?P |- _ => clear H' | _ => progress hammer end.
(* TODO: zero flag is a little tricky, since the value depends both on the stored variable and the carry if there is one. For now, since Barrett doesn't use it, we're just pretending it doesn't exist. *)
Definition cc_good cc cctx ctx r := CC.cc_c cc = cctx (r CC.C) /\ CC.cc_m cc = cc_spec CC.M (ctx (r CC.M)) /\ CC.cc_l cc = cc_spec CC.L (ctx (r CC.L)) /\ (forall n0 : name, consts 0 = Some n0 -> cctx n0 = false) /\ (forall n1 : name, consts 1 = Some n1 -> cctx n1 = true).
Lemma of_prefancy_identZ_loosen_correct_gen {s d} idc: forall (x : @cexpr var _) i ctx G cc cctx x2 r rf f u, @valid_ident s d r rf idc x -> match s, d return ident (s -> d) -> cexpr s -> (var d -> _ -> _) -> Prop with | type.base s, type.base tZ => fun idc x rf => API.wf G (#idc @ x)%expr x2 -> API.wf G (cstZ r[0~>u]) f -> 0 < u < wordmax -> cc_good cc cctx ctx r -> (forall n v, consts v = Some n -> In (existZ (n, v)) G) -> (forall t (v1 : var (type.base t)) v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> (forall n, ctx n mod wordmax = ctx n) -> of_prefancy_ident idc x = Some i -> (spec (projT1 i) (Tuple.map ctx (projT2 i)) cc mod wordmax = spec (projT1 i) (Tuple.map ctx (projT2 i)) cc mod (u+1)) -> spec (projT1 i) (Tuple.map ctx (projT2 i)) cc mod wordmax = (cinterp f (cinterp x2)) | _, _ => fun _ _ _ => True end idc x rf.
Proof using Type.
destruct 1; try exact I; cbn [of_prefancy_ident]; cbn [GallinaReify.base.reify ident.ident_Literal ident.buildIdent] in *; hammer; intros; inversion_option; (simplify_ident; [ ]).
all: rewrite cast_mod by lia; match goal with | H : context [spec _ _ _ mod _ = _] |- ?x mod wordmax = _ mod ?m => replace (x mod wordmax) with (x mod m) by auto end.
all: cbn - [Z.shiftl wordmax]; cbv [cc_good] in *; destruct_head'_and; repeat match goal with | H : CC.cc_c _ = _ |- _ => rewrite H | H : CC.cc_m _ = _ |- _ => rewrite H | H : CC.cc_l _ = _ |- _ => rewrite H | H : CC.cc_z _ = _ |- _ => rewrite H | H: of_prefancy_scalar _ = ?r ?c |- _ => rewrite <-H | _ => progress rewrite ?cc_m_zselect, ?cc_l_zselect by auto | _ => progress rewrite ?Z.add_modulo_correct, ?Z.geb_leb by auto | |- context [cinterp ?x] => erewrite of_prefancy_scalar_correct with (e2:=x) by eauto | |- context [cinterp ?x] => erewrite <-of_prefancy_scalar_carry with (e:=x) by eauto | |- context [if _ (of_prefancy_scalar _) then _ else _ ] => cbv [Z.zselect Z.b2z]; break_innermost_match; Z.ltb_to_lt; try reflexivity; congruence end; try reflexivity.
{
(* RSHI case *)
cbv [Z.rshi].
rewrite Z.land_ones, Z.shiftl_mul_pow2 by (cbv; congruence).
change (2 ^ Z.log2 wordmax) with wordmax.
break_innermost_match; try congruence; [ ].
autorewrite with zsimplify_fast.
repeat (f_equal; try ring).
}
Qed.
Lemma of_prefancy_identZ_loosen_correct {s} idc: forall (x : @cexpr var _) i ctx G cc cctx x2 r rf f u, @valid_ident (type.base s) tZ r rf idc x -> API.wf G (#idc @ x)%expr x2 -> API.wf G (cstZ r[0~>u]) f -> 0 < u < wordmax -> cc_good cc cctx ctx r -> (forall n v, consts v = Some n -> In (existZ (n, v)) G) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> (forall n, ctx n mod wordmax = ctx n) -> of_prefancy_ident idc x = Some i -> (spec (projT1 i) (Tuple.map ctx (projT2 i)) cc mod wordmax = spec (projT1 i) (Tuple.map ctx (projT2 i)) cc mod (u+1)) -> spec (projT1 i) (Tuple.map ctx (projT2 i)) cc mod wordmax = (cinterp f (cinterp x2)).
Proof using Type.
apply (@of_prefancy_identZ_loosen_correct_gen (type.base s) (type.base tZ)).
Qed.
Lemma of_prefancy_identZ_correct {s} idc: forall (x : @cexpr var _) i ctx G cc cctx x2 r rf f, @valid_ident (type.base s) tZ r rf idc x -> API.wf G (#idc @ x)%expr x2 -> API.wf G (cstZ uint256) f -> cc_good cc cctx ctx r -> (forall n v, consts v = Some n -> In (existZ (n, v)) G) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> (forall n, ctx n mod wordmax = ctx n) -> of_prefancy_ident idc x = Some i -> spec (projT1 i) (Tuple.map ctx (projT2 i)) cc mod wordmax = (cinterp f (cinterp x2)).
Proof using Type.
intros; eapply of_prefancy_identZ_loosen_correct; try eassumption; [ | ].
{
cbn; lia.
}
{
intros; f_equal; ring.
}
Qed.
Lemma of_prefancy_identZZ_correct' {s} idc: forall (x : @cexpr var _) i ctx G cc cctx x2 r rf f, @valid_ident (type.base s) (tZ * tZ) r rf idc x -> API.wf G (#idc @ x)%expr x2 -> API.wf G (cstZZ uint256 r[0~>1]) f -> cc_good cc cctx ctx r -> (forall n v, consts v = Some n -> In (existZ (n, v)) G) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> (forall n, ctx n mod wordmax = ctx n) -> of_prefancy_ident idc x = Some i -> spec (projT1 i) (Tuple.map ctx (projT2 i)) cc mod wordmax = fst (cinterp f (cinterp x2)) /\ Z.b2z (cc_spec CC.C (spec (projT1 i) (Tuple.map ctx (projT2 i)) cc)) = snd (cinterp f (cinterp x2)).
Proof using Type.
inversion 1; inversion 1; cbn [of_prefancy_ident]; intros; hammer; (simplify_ident; [ ]); cbn - [Z.div Z.modulo]; cbv [Z.sub_with_borrow Z.add_with_carry]; cbv [cc_good] in *; destruct_head'_and; autorewrite with zsimplify_fast.
all: repeat match goal with | H : CC.cc_c _ = _ |- _ => rewrite H | H: of_prefancy_scalar _ = ?r ?c |- _ => rewrite <-H | H : API.wf _ ?x ?e |- context [cinterp ?e] => erewrite <-of_prefancy_scalar_correct with (e1:=x) (e2:=e) by eauto | H : API.wf _ ?x ?e2 |- context [cinterp ?e2] => erewrite <-of_prefancy_scalar_carry with (c:=x) (e:=e2) by eauto end.
all: match goal with |- context [(?x << ?n) mod ?m] => pose proof (Z.mod_pos_bound (x << n) m ltac:(lia)) end.
all:repeat match goal with | |- context [if _ (of_prefancy_scalar _) then _ else _ ] => cbv [Z.zselect Z.b2z]; break_innermost_match; Z.ltb_to_lt; try congruence; [ | ] | _ => rewrite Z.add_opp_r | _ => rewrite Z.div_sub_small by auto with zarith | H : forall n, ?ctx n mod wordmax = ?ctx n |- context [?ctx ?m - _] => rewrite <-(H m) | |- ((?x - ?y - ?c) / _) mod _ = - ((- ?c + ?x - ?y) / _) mod _ => replace (-c + x - y) with (x - (y + c)) by ring; replace (x - y - c) with (x - (y + c)) by ring | _ => split | _ => try apply (f_equal2 Z.modulo); try apply (f_equal2 Z.div); ring | _ => break_innermost_match; reflexivity end.
Qed.
Lemma of_prefancy_identZZ_correct {s} idc: forall (x : @cexpr var _) i ctx G cc cctx x2 r rf f, @valid_ident (type.base s) (tZ * tZ) r rf idc x -> API.wf G (#idc @ x)%expr x2 -> API.wf G (cstZZ uint256 r[0~>1]) f -> cc_good cc cctx ctx r -> (forall n v, consts v = Some n -> In (existZ (n, v)) G) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> (forall n, ctx n mod wordmax = ctx n) -> of_prefancy_ident idc x = Some i -> spec (projT1 i) (Tuple.map ctx (projT2 i)) cc mod wordmax = fst (cinterp f (cinterp x2)).
Proof using Type.
apply of_prefancy_identZZ_correct'.
Qed.
Lemma of_prefancy_identZZ_correct_carry {s} idc: forall (x : @cexpr var _) i ctx G cc cctx x2 r rf f, @valid_ident (type.base s) (tZ * tZ) r rf idc x -> API.wf G (#idc @ x)%expr x2 -> API.wf G (cstZZ uint256 r[0~>1]) f -> cc_good cc cctx ctx r -> (forall n v, consts v = Some n -> In (existZ (n, v)) G) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> (forall n, ctx n mod wordmax = ctx n) -> of_prefancy_ident idc x = Some i -> Z.b2z (cc_spec CC.C (spec (projT1 i) (Tuple.map ctx (projT2 i)) cc)) = snd (cinterp f (cinterp x2)).
Proof using Type.
apply of_prefancy_identZZ_correct'.
Qed.
Lemma identZZ_writes {s} idc r rf x: @valid_ident (type.base s) (tZ * tZ) r rf idc x -> forall i, of_prefancy_ident idc x = Some i -> In CC.C (writes_conditions (projT1 i)).
Proof using Type.
inversion 1; repeat match goal with | _ => progress intros | _ => progress cbn [of_prefancy_ident writes_conditions ADD ADDC SUB SUBC In] in * | _ => progress hammer; Z.ltb_to_lt | _ => congruence end.
Qed.
(* Common side conditions for cases in of_prefancy_correct *)
Local Ltac side_cond := repeat match goal with | _ => progress intros | _ => progress cbn [In fst snd] in * | H : _ \/ _ |- _ => destruct H | [H : forall _ _, In _ ?l -> _, H' : In _ ?l |- _] => let H'' := fresh in pose proof H'; apply H in H''; clear H | H : name_lt ?n ?n |- _ => specialize (name_lt_irr n); contradiction | _ => progress hammer | _ => solve [eauto] end.
Lemma interp_base_helper G next_name ctx cctx : (forall n v2, In (existZ (n, v2)) G -> name_lt n next_name) -> (forall n v2, In (existZZ (n, v2)) G -> name_lt (fst n) next_name) -> (forall n v2, In (existZZ (n, v2)) G -> fst n = snd n) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> t = tZ \/ t = (tZ * tZ)%etype) -> forall t v1 v2 x xc, In (existT (fun t : type => (var t * type.interp base.interp t)%type) (type.base t) (v1, v2)%zrange) ((existZ (next_name, x)%zrange) :: G) -> interp_base (fun n : name => if name_eqb n next_name then x else ctx n) (fun n : name => if name_eqb n next_name then xc else cctx n) v1 = v2.
Proof using name_eqb_eq name_eqb_neq name_lt_irr.
intros.
repeat match goal with | H: In _ (_ :: _) |- _ => cbn [In] in H; destruct H; [ solve [side_cond] | ] | H : (forall t _ _, In _ ?G -> (t = _ \/ t = _)), H' : In _ ?G |- _ => destruct (H _ _ _ H'); subst t | H : forall _ _ _, In _ ?G -> interp_base _ _ _ = _, H' : In _ G |- _ => specialize (H _ _ _ H') end; side_cond.
Qed.
Lemma name_eqb_refl n : name_eqb n n = true.
Proof using name_eqb_eq name_eqb_neq.
case_eq (name_eqb n n); intros; name_eqb_to_eq; auto.
Qed.
Lemma valid_ident_new_cc_to_name s d r rf idc x y n : @valid_ident (type.base s) (type.base d) r rf idc x -> of_prefancy_ident idc x = Some y -> rf n = new_cc_to_name r (projT1 y) n.
Proof using Type.
inversion 1; intros; hammer; simplify_ident.
Qed.
Lemma new_cc_to_name_Z_cases r i n x : new_cc_to_name (d:=tZ) r i n x = if in_dec CC.code_dec x (writes_conditions i) then n else r x.
Proof using Type.
reflexivity.
Qed.
Lemma new_cc_to_name_ZZ_cases r i n x : new_cc_to_name (d:=tZ * tZ) r i n x = if in_dec CC.code_dec x (writes_conditions i) then fst n else r x.
Proof using Type.
reflexivity.
Qed.
Lemma cc_good_helper cc cctx ctx r i x next_name : (forall c, name_lt (r c) next_name) -> (forall n v, consts v = Some n -> name_lt n next_name) -> cc_good cc cctx ctx r -> cc_good (CC.update (writes_conditions i) x cc_spec cc) (fun n : name => if name_eqb n next_name then CC.cc_c (CC.update (writes_conditions i) x cc_spec cc) else cctx n) (fun n : name => if name_eqb n next_name then x mod wordmax else ctx n) (new_cc_to_name (d:=tZ) r i next_name).
Proof using name_eqb_eq name_eqb_neq name_lt_irr.
cbv [cc_good]; intros; destruct_head'_and.
rewrite !new_cc_to_name_Z_cases.
cbv [CC.update CC.cc_c CC.cc_m CC.cc_l CC.cc_z].
repeat match goal with | _ => split; intros | _ => progress hammer | H : forall c, name_lt (r c) (r ?c2) |- _ => specialize (H c2) | H : (forall n v, consts v = Some n -> name_lt _ _), H' : consts _ = Some _ |- _ => specialize (H _ _ H') | H : name_lt ?n ?n |- _ => apply name_lt_irr in H; contradiction | _ => cbv [cc_spec]; rewrite Z.mod_pow2_bits_low by lia | _ => congruence end.
Qed.
Lemma of_prefancy_correct {t} (e1 : @cexpr var t) (e2 : @cexpr _ t) r : valid_expr _ r e1 -> forall G, API.wf G e1 e2 -> forall ctx cc cctx, cc_good cc cctx ctx r -> (forall n v, consts v = Some n -> In (existZ (n, v)) G) -> (forall n v2, In (existZZ (n, v2)) G -> fst n = snd n) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> interp_base ctx cctx v1 = v2) -> (forall t v1 v2, In (existT _ (type.base t) (v1, v2)) G -> t = tZ \/ t = (tZ * tZ)%etype) -> (forall n, ctx n mod wordmax = ctx n) -> forall next_name result, (forall c : CC.code, name_lt (r c) next_name) -> (forall n v2, In (existZ (n, v2)) G -> name_lt n next_name) -> (forall n v2, In (existZZ (n, v2)) G -> name_lt (fst n) next_name) -> (interp_if_Z e2 = Some result) -> interp (@of_prefancy next_name t e1) cc ctx = result.
Proof using name_eqb_eq name_eqb_neq name_lt_irr name_lt_succ name_lt_trans.
induction 1; inversion 1; cbv [interp_if_Z]; cbn [of_prefancy of_prefancy_step]; intros; match goal with H : context [interp_base _ _ _ = _] |- _ => pose proof (H tZ) end; try solve [prove_Ret]; [ | | ]; hammer; match goal with | H : context [interp (of_prefancy _ _) _ _ = _] |- interp _ ?cc' ?ctx' = _ => match goal with | _ : context [LetInAppIdentZ _ _ _ _ _ _] |- _=> erewrite H with (G := (existZ (next_name, ctx' next_name)) :: G) (e2 := _ (ctx' next_name)) (cctx := (fun n => if name_eqb n next_name then CC.cc_c cc' else cctx n)) | _ : context [LetInAppIdentZZ _ _ _ _ _ _ _] |- _=> erewrite H with (G := (existZZ ((next_name, next_name), (ctx' next_name, Z.b2z (CC.cc_c cc')))) :: G) (e2 := _ (ctx' next_name, Z.b2z (CC.cc_c cc'))) (cctx := (fun n => if name_eqb n next_name then CC.cc_c cc' else cctx n)) end end; repeat match goal with | _ => progress intros | _ => rewrite name_eqb_refl in * | _ => rewrite Z.testbit_spec' in * | _ => erewrite valid_ident_new_cc_to_name by eassumption | _ => rewrite new_cc_to_name_Z_cases | _ => rewrite new_cc_to_name_ZZ_cases | _ => solve [intros; eapply interp_base_helper; side_cond] | _ => solve [intros; apply cc_good_helper; eauto] | _ => reflexivity | _ => solve [eauto using Z.mod_small, b2z_range] | _ => progress autorewrite with zsimplify_fast | _ => progress side_cond end; [ | | ].
{
cbn - [cc_spec]; cbv [id]; cbn - [cc_spec].
inversion wf_x; hammer.
erewrite @of_prefancy_identZ_loosen_correct by eauto.
reflexivity.
}
{
cbn - [cc_spec]; cbv [id]; cbn - [cc_spec].
inversion wf_x; hammer.
erewrite of_prefancy_identZ_correct by eassumption.
reflexivity.
}
{
cbn - [cc_spec]; cbv [id]; cbn - [cc_spec].
match goal with H : _ |- _ => pose proof H; eapply identZZ_writes in H; [ | eassumption] end.
inversion wf_x; hammer.
erewrite of_prefancy_identZZ_correct by eassumption.
erewrite of_prefancy_identZZ_correct_carry by eassumption.
rewrite <-surjective_pairing.
reflexivity.
}
Qed.
End Proofs.
End of_prefancy.
Section allocate_registers.
Context (reg name : Type) (name_eqb : name -> name -> bool) (error : reg).
Fixpoint allocate (e : @expr name) (reg_list : list reg) (name_to_reg : name -> reg) : @expr reg := match e with | Ret n => Ret (name_to_reg n) | Instr i rd args cont => match reg_list with | r :: reg_list' => Instr i r (Tuple.map name_to_reg args) (allocate cont reg_list' (fun n => if name_eqb n rd then r else name_to_reg n)) | nil => Ret error end end.
End allocate_registers.
Definition test_prog : @expr positive := Instr (ADD (128)) 3%positive (1, 2)%positive (Instr (ADDC 0) 4%positive (3,1)%positive (Ret 4%positive)).
Definition x1 := 2^256 - 1.
Definition x2 := 2^128 - 1.
Definition wordmax := 2^256.
Definition expected := let r3' := (x1 + (x2 << 128)) in let r3 := r3' mod wordmax in let c := r3' / wordmax in let r4' := (r3 + x1 + c) in r4' mod wordmax.
Definition actual := interp Pos.eqb (2^256) cc_spec test_prog {|CC.cc_c:=false; CC.cc_m:=false; CC.cc_l:=false; CC.cc_z:=false|} (fun n => if Pos.eqb n 1%positive then x1 else if Pos.eqb n 2%positive then x2 else 0).
Lemma test_prog_ok : expected = actual.
Proof.
reflexivity.
Qed.
Definition of_Expr {t} next_name (consts : Z -> option positive) (e : expr.Expr t) (x : type.for_each_lhs_of_arrow (var positive) t) : positive -> @expr positive := fun error => @of_prefancy positive Pos.succ error consts next_name _ (invert_expr.smart_App_curried (e _) x).
Section Proofs.
Fixpoint var_pairs {t var1 var2} : type.for_each_lhs_of_arrow var1 t -> type.for_each_lhs_of_arrow var2 t -> list {t : Compilers.type base.type.type & (var1 t * var2 t)%type } := match t as t0 return (type.for_each_lhs_of_arrow var1 t0 -> type.for_each_lhs_of_arrow var2 t0 -> _) with | type.base _ => fun _ _ => nil | type.arrow s d => fun x1 x2 => existT _ _ (fst x1, fst x2) :: var_pairs (snd x1) (snd x2) end.
Local Notation tZ := (base.type.type_base base.type.Z).
Local Notation existZ := (existT _ (type.base tZ)).
Local Notation existZZ := (existT _ (type.base (tZ * tZ)%etype)).
Fixpoint make_ctx (var_list : list (positive * Z)) : positive -> Z := match var_list with | [] => fun _ => 0 | (n, v) :: l' => fun m => if (m =? n)%positive then v else make_ctx l' m end.
Definition make_pairs : list (positive * Z) -> list {t : Compilers.type base.type.type & (var positive t * @type.interp base.type base.interp t)%type } := List.map (fun x => existZ x).
Fixpoint make_consts (consts_list : list (positive * Z)) : Z -> option positive := match consts_list with | [] => fun _ => None | (n, v) :: l' => fun x => if x =? v then Some n else make_consts l' x end.
Local Ltac ez := repeat match goal with | _ => progress intros | _ => progress subst | H : _ \/ _ |- _ => destruct H | H : _ |- _ => rewrite Pos.eqb_eq in H | H : _ |- _ => rewrite Pos.eqb_neq in H | _ => progress break_innermost_match | _ => progress break_match_hyps | _ => progress inversion_sigma | _ => progress inversion_option | _ => progress inversion_prod | _ => progress HProp.eliminate_hprop_eq | _ => progress Z.ltb_to_lt | _ => reflexivity | _ => congruence | _ => solve [eauto] end.
Lemma make_consts_ok consts_list n v : make_consts consts_list v = Some n -> In (existZ (n, v)%zrange) (make_pairs consts_list).
Proof.
cbv [make_pairs]; induction consts_list as [|[ ? ? ] ?]; cbn; ez.
Qed.
Lemma make_pairs_ok consts_list: forall v1 v2, In (existZ (v1, v2)%zrange) (make_pairs consts_list) -> In (v1, v2) consts_list.
Proof.
cbv [make_pairs].
induction consts_list as [| [ n v ] ? ]; cbn; [ tauto | ].
ez.
Qed.
Lemma make_ctx_ok consts_list: (forall n v1 v2, In (n, v1) consts_list -> In (n, v2) consts_list -> v1 = v2) -> forall n v, In (n, v) consts_list -> make_ctx consts_list n = v.
Proof.
induction consts_list as [| [ n v ] ? ]; cbn; [ tauto | ].
repeat match goal with | _ => progress cbn [eq_rect fst snd] in * | _ => progress ez end.
Qed.
Lemma make_ctx_cases consts_list n : make_ctx consts_list n = 0 \/ In (n, make_ctx consts_list n) consts_list.
Proof.
induction consts_list; cbn; ez.
Qed.
Lemma only_integers consts_list t v1 v2 : In (existT (fun t : type => (var positive t * type.interp base.interp t)%type) (type.base t) (v1, v2)%zrange) (make_pairs consts_list) -> t = tZ.
Proof.
induction consts_list; cbn; [ tauto | ].
destruct 1; congruence || tauto.
Qed.
Lemma no_pairs consts_list v1 v2 : In (existZZ (v1, v2)%zrange) (make_pairs consts_list) -> False.
Proof.
intro H; apply only_integers in H.
congruence.
Qed.
Definition make_cc last_wrote ctx carry_flag : CC.state := {| CC.cc_c := carry_flag; CC.cc_m := cc_spec CC.M (ctx (last_wrote CC.M)); CC.cc_l := cc_spec CC.L (ctx (last_wrote CC.L)); CC.cc_z := cc_spec CC.Z (ctx (last_wrote CC.Z) + (if (last_wrote CC.C =? last_wrote CC.Z)%positive then wordmax * Z.b2z carry_flag else 0)); |}.
Hint Resolve Pos.lt_trans Pos.lt_irrefl Pos.lt_succ_diag_r Pos.eqb_refl : core.
Hint Resolve in_or_app : core.
Hint Resolve make_consts_ok make_pairs_ok make_ctx_ok no_pairs : core.
(* TODO : probably not all of these preconditions are necessary -- prune them sometime *)
Lemma of_Expr_correct next_name consts_list arg_list error (carry_flag : bool) (last_wrote : CC.code -> positive) (* variables which last wrote to each flag; put RegZero if flag empty *) t (e : Expr t) (x1 : type.for_each_lhs_of_arrow (var positive) t) (x2 : type.for_each_lhs_of_arrow _ t) result : let e1 := (invert_expr.smart_App_curried (e _) x1) in let e2 := (invert_expr.smart_App_curried (e _) x2) in let ctx := make_ctx (consts_list ++ arg_list) in let consts := make_consts consts_list in let cc := make_cc last_wrote ctx carry_flag in let G := make_pairs consts_list ++ make_pairs arg_list in (forall c, last_wrote c < next_name)%positive -> (forall n v, In (n, v) (consts_list ++ arg_list) -> (n < next_name)%positive) -> (In (last_wrote CC.C, Z.b2z carry_flag) consts_list) -> (forall n v1 v2, In (n, v1) (consts_list ++ arg_list) -> In (n, v2) (consts_list ++ arg_list) -> v1 = v2) (* no duplicate names *) -> (forall v1 v2, In (v1, v2) consts_list -> v2 mod 2 ^ 256 = v2) -> (forall v1 v2, In (v1, v2) arg_list -> v2 mod 2 ^ 256 = v2) -> (API.wf G e1 e2) -> valid_expr _ error consts _ last_wrote e1 -> interp_if_Z e2 = Some result -> interp Pos.eqb wordmax cc_spec (of_Expr next_name consts e x1 error) cc ctx = result.
Proof.
cbv [of_Expr]; intros.
eapply of_prefancy_correct with (name_lt := Pos.lt) (cctx := fun n => if (n =? last_wrote CC.C)%positive then carry_flag else match make_consts consts_list 1 with | Some n1 => (n =? n1)%positive | _ => false end); cbv [id]; eauto; try apply Pos.eqb_neq; intros; try solve [apply make_ctx_ok; auto; apply make_pairs_ok; cbv [make_pairs]; rewrite map_app; auto ]; repeat match goal with | H : _ |- _ => apply in_app_or in H; destruct H | H : In _ (make_pairs _) |- context [ _ = base.type.type_base _] => apply only_integers in H | H : In _ (make_pairs _) |- context [interp_base] => pose proof (only_integers _ _ _ _ H); subst; cbn [interp_base] | _ => solve [apply Pos.eqb_eq; auto] | _ => solve [eauto] | _ => solve [exfalso; eauto] end; [ | ].
(* TODO : clean this up *)
{
cbv [cc_good make_cc]; repeat split; intros; [ rewrite Pos.eqb_refl; reflexivity | | ]; break_innermost_match; try rewrite Pos.eqb_eq in *; subst; try reflexivity; repeat match goal with | H : make_consts _ _ = Some _ |- _ => try rewrite H; apply make_consts_ok, make_pairs_ok in H | _ => apply Pos.eqb_neq; intro; subst | _ => inversion_option; congruence end; match goal with | H : In (?n, ?x) consts_list, H': In (?n, ?y) consts_list, H'' : forall n x y, In (n,x) _ -> In (n,y) _ -> x = y |- _ => assert (x = y) by (eapply H''; eauto) end; destruct carry_flag; cbn [Z.b2z] in *; congruence.
}
{
match goal with |- context [make_ctx ?l ?n] => let H := fresh in destruct (make_ctx_cases l n) as [H | H]; [ rewrite H | apply in_app_or in H; destruct H ] end; eauto.
}
Qed.
End Proofs.
(* Tactics and lemmas that help to prove two Fancy expressions are equivalent. *)
Section Equivalence.
Context {name} (name_eqb : name -> name -> bool) (wordmax : Z).
Let interp := interp name_eqb wordmax cc_spec.
Lemma interp_step i rd args cont cc ctx : interp (Instr i rd args cont) cc ctx = let result := spec i (Tuple.map ctx args) cc in let new_cc := CC.update (writes_conditions i) result cc_spec cc in let new_ctx := fun n => if name_eqb n rd then result mod wordmax else ctx n in interp cont new_cc new_ctx.
Proof using Type.
reflexivity.
Qed.
Lemma interp_state_equiv e : forall cc ctx cc' ctx', cc = cc' -> (forall r, ctx r = ctx' r) -> interp e cc ctx = interp e cc' ctx'.
Proof using name_eqb wordmax.
induction e; intros; subst; cbn; [solve[auto]|].
apply IHe; rewrite Tuple.map_ext with (g:=ctx') by auto; [reflexivity|].
intros; break_match; auto.
Qed.
Local Ltac prove_comm H := rewrite !interp_step; cbn - [interp]; intros; rewrite H; try reflexivity.
Lemma mulll_comm rd x y cont cc ctx : interp (Instr MUL128LL rd (x, y) cont) cc ctx = interp (Instr MUL128LL rd (y, x) cont) cc ctx.
Proof using name_eqb wordmax.
prove_comm Z.mul_comm.
Qed.
Lemma mulhh_comm rd x y cont cc ctx : interp (Instr MUL128UU rd (x, y) cont) cc ctx = interp (Instr MUL128UU rd (y, x) cont) cc ctx.
Proof using name_eqb wordmax.
prove_comm Z.mul_comm.
Qed.
Lemma mullh_mulhl rd x y cont cc ctx : interp (Instr MUL128LU rd (x, y) cont) cc ctx = interp (Instr MUL128UL rd (y, x) cont) cc ctx.
Proof using name_eqb wordmax.
prove_comm Z.mul_comm.
Qed.
Lemma add_comm rd x y cont cc ctx : 0 <= ctx x < 2^256 -> 0 <= ctx y < 2^256 -> interp (Instr (ADD 0) rd (x, y) cont) cc ctx = interp (Instr (ADD 0) rd (y, x) cont) cc ctx.
Proof using name_eqb wordmax.
prove_comm Z.add_comm.
rewrite !(Z.mod_small (ctx _)) by lia.
reflexivity.
Qed.
Lemma addc_comm rd x y cont cc ctx : 0 <= ctx x < 2^256 -> 0 <= ctx y < 2^256 -> interp (Instr (ADDC 0) rd (x, y) cont) cc ctx = interp (Instr (ADDC 0) rd (y, x) cont) cc ctx.
Proof using name_eqb wordmax.
prove_comm (Z.add_comm (ctx x)).
rewrite !(Z.mod_small (ctx _)) by lia.
reflexivity.
Qed.
End Equivalence.
(* Tactics for proving equivalence *) (* pose the equivalence of a single instruction's result *)
Ltac results_equiv := match goal with |- ?lhs = ?rhs => match lhs with context [spec ?li ?largs ?lcc] => match rhs with context [spec ?ri ?rargs ?rcc] => replace (spec li largs lcc) with (spec ri rargs rcc) end end end.
(* simplify the updating of condition codes to prevent exponential blowup in [step] *)
Ltac simplify_cc := match goal with |- context [CC.update ?to_write ?result ?cc_spec ?old_state] => let e := eval cbv -[spec cc_spec CC.cc_l CC.cc_m CC.cc_z CC.cc_c] in (CC.update to_write result cc_spec old_state) in change (CC.update to_write result cc_spec old_state) with e end.
(* remember the result of an instruction (again, prevents exponential blowup in [step] *)
Ltac remember_single_result := match goal with |- context [(spec ?i ?args ?cc) mod ?w] => let x := fresh "x" in let y := fresh "y" in remember (spec i args cc) as x; remember (x mod w) as y end.
(* rewrite with interp_step and remember the results *)
Ltac step := match goal with |- interp _ _ _ (Instr ?i ?rd1 ?args1 ?cont1) ?cc1 ?ctx1 = interp _ _ _ (Instr ?i ?rd2 ?args2 ?cont2) ?cc2 ?ctx2 => rewrite (interp_step _ _ i rd1 args1 cont1); rewrite (interp_step _ _ i rd2 args2 cont2) end; cbn - [interp spec cc_spec]; repeat progress rewrite ?Registers.reg_eqb_neq, ?Registers.reg_eqb_refl by congruence; results_equiv; [ remember_single_result; repeat simplify_cc | try reflexivity ].